These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 3989113)
1. Short-term effects of sound exposure on the 2f1-f2 acoustic emission. Dolan TG; Abbas PJ J Acoust Soc Am; 1985 Apr; 77(4):1614-6. PubMed ID: 3989113 [TBL] [Abstract][Full Text] [Related]
2. Changes in the 2f1-f2 acoustic emission and whole-nerve response following sound exposure: long-term effects. Dolan TG; Abbas PJ J Acoust Soc Am; 1985 Apr; 77(4):1475-83. PubMed ID: 3989103 [TBL] [Abstract][Full Text] [Related]
3. Cochlear mechanics: implications of electrophysiological and acoustical observations. Kim DO Hear Res; 1980 Jun; 2(3-4):297-317. PubMed ID: 7410234 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear phenomena as observed in the ear canal and at the auditory nerve. Fahey PF; Allen JB J Acoust Soc Am; 1985 Feb; 77(2):599-612. PubMed ID: 3973231 [TBL] [Abstract][Full Text] [Related]
5. Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2. Siegel JH; Kim DO; Molnar CE J Neurophysiol; 1982 Feb; 47(2):303-28. PubMed ID: 7062102 [TBL] [Abstract][Full Text] [Related]
6. Distortion generated by the ear: its emergence and evolution during development. Tubach M; McGee J; Walsh EJ Laryngoscope; 1996 Jul; 106(7):822-30. PubMed ID: 8667976 [TBL] [Abstract][Full Text] [Related]
7. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. Crawford AC; Fettiplace R J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380 [TBL] [Abstract][Full Text] [Related]
8. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319 [TBL] [Abstract][Full Text] [Related]
9. Measurement of the combination tone 2f1-f2 using two-tone forward masking and compound action potential responses. Norris CH; Johnstone BM Hear Res; 1984 Sep; 15(3):281-6. PubMed ID: 6501115 [TBL] [Abstract][Full Text] [Related]
10. [Effects of short-term tone exposure on DPOAEs]. Shi Y; Jiang S; Gu R Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Feb; 32(1):41-4. PubMed ID: 10743127 [TBL] [Abstract][Full Text] [Related]
11. Behavioral thresholds in the cat to frequency modulated sound and electrical stimulation of the auditory nerve. Clark GM; Kranz HG; Minas H Exp Neurol; 1973 Oct; 41(1):190-200. PubMed ID: 4743485 [No Abstract] [Full Text] [Related]
12. Auditory responses in cats produced by pulsed ultrasound. Foster KR; Wiederhold ML J Acoust Soc Am; 1978 Apr; 63(4):1199-205. PubMed ID: 649878 [TBL] [Abstract][Full Text] [Related]
13. [Bioelectric activity of the cochlea and the acoustic nerve during various disturbances of sound conduction in the middle and inner ear]. Shchurovskiĭ VV; Bakaĭ EA Zh Ushn Nos Gorl Bolezn; 1972; 32(4):32-7. PubMed ID: 5080231 [No Abstract] [Full Text] [Related]
14. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates. Abdala C J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474 [TBL] [Abstract][Full Text] [Related]
15. The site at which peripheral auditory adaptation occurs. Norris CH; Guth PS; Daigneault EA Brain Res; 1977 Mar; 123(1):176-9. PubMed ID: 843916 [No Abstract] [Full Text] [Related]
16. On the role of the tensor tympani muscle in sound conduction through the middle ear. Kevanishvili ZS; Gvacharia ZV Acta Otolaryngol; 1972 Oct; 74(4):231-9. PubMed ID: 5076590 [No Abstract] [Full Text] [Related]