These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3989724)

  • 1. Electrophysiology of succinate transport across rabbit renal brush border membranes.
    Schell RE; Wright EM
    J Physiol; 1985 Mar; 360():95-104. PubMed ID: 3989724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetry of the Na+-succinate cotransporter in rabbit renal brush-border membranes.
    Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Aug; 775(1):17-21. PubMed ID: 6466657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of sodium succinate cotransport across renal brush-border membranes.
    Wright SH; Hirayama B; Kaunitz JD; Kippen I; Wright EM
    J Biol Chem; 1983 May; 258(9):5456-62. PubMed ID: 6853527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiology of plasma membrane vesicles.
    Wright EM
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F363-72. PubMed ID: 6372509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.
    Wright SH; Kippen I; Wright EM
    J Biol Chem; 1982 Feb; 257(4):1773-8. PubMed ID: 7056744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinate and citrate transport in renal basolateral and brush-border membranes.
    Wright SH; Wunz TM
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between sodium and succinate transport across renal brush border membrane vesicles.
    Hirayama B; Wright EM
    Pflugers Arch; 1986; 407 Suppl 2():S174-9. PubMed ID: 3822764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dicarboxylate transport in renal basolateral and brush-border membrane vesicles.
    Kim YK; Jung JS; Lee SH
    Can J Physiol Pharmacol; 1992 Jan; 70(1):106-12. PubMed ID: 1581843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-gradient-driven, high-affinity, uphill transport of succinate in human placental brush-border membrane vesicles.
    Ganapathy V; Ganapathy ME; Tiruppathi C; Miyamoto Y; Mahesh VB; Leibach FH
    Biochem J; 1988 Jan; 249(1):179-84. PubMed ID: 3342005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye.
    Schell RE; Stevens BR; Wright EM
    J Physiol; 1983 Feb; 335():307-18. PubMed ID: 6875880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of renal brush-border Na+-cotransport systems to anions.
    Levine R; Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Jan; 769(2):508-10. PubMed ID: 6696897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on cation-induced membrane vesicle aggregation of porcine intestinal brush borders.
    Ohyashiki T; Takeuchi M; Mohri T
    J Biochem; 1984 Mar; 95(3):881-6. PubMed ID: 6725240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye.
    Wright SH; Krasne S; Kippen I; Wright EM
    Biochim Biophys Acta; 1981 Feb; 640(3):767-78. PubMed ID: 7213704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium/calmodulin inhibition of coupled NaCl transport in membrane vesicles from rabbit ileal brush border.
    Fan CC; Powell DW
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5248-52. PubMed ID: 6412227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex.
    Lücke H; Stange G; Murer H
    Biochem J; 1979 Jul; 182(1):223-9. PubMed ID: 91368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidyl residues at the active site of the Na/succinate co-transporter in rabbit renal brush borders.
    Bindslev N; Wright EM
    J Membr Biol; 1984; 81(2):159-70. PubMed ID: 6541702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between tricarboxylic acid cycle intermediates and phosphate uptake by proximal renal cells and renal brush border membranes.
    Sakhrani LM; Tessitore N; Wright SH; Varner D; Massry SG
    Miner Electrolyte Metab; 1985; 11(6):345-50. PubMed ID: 4069084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements.
    Kragh-Hansen U; Jørgensen KE; Sheikh MI
    Biochem J; 1982 Nov; 208(2):359-68. PubMed ID: 7159404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.