These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 3990678)
1. Identification of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Hoffmann KJ; Streeter AJ; Axworthy DB; Baillie TA Mol Pharmacol; 1985 May; 27(5):566-73. PubMed ID: 3990678 [TBL] [Abstract][Full Text] [Related]
2. Acetaminophen-induced hepatotoxicity. Analysis of total covalent binding vs. specific binding to cysteine. Matthews AM; Roberts DW; Hinson JA; Pumford NR Drug Metab Dispos; 1996 Nov; 24(11):1192-6. PubMed ID: 8937852 [TBL] [Abstract][Full Text] [Related]
3. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice. Pumford NR; Hinson JA; Potter DW; Rowland KL; Benson RW; Roberts DW J Pharmacol Exp Ther; 1989 Jan; 248(1):190-6. PubMed ID: 2913271 [TBL] [Abstract][Full Text] [Related]
4. The covalent binding of [14C]acetaminophen to mouse hepatic microsomal proteins: the specific binding to calreticulin and the two forms of the thiol:protein disulfide oxidoreductases. Zhou L; McKenzie BA; Eccleston ED; Srivastava SP; Chen N; Erickson RR; Holtzman JL Chem Res Toxicol; 1996; 9(7):1176-82. PubMed ID: 8902274 [TBL] [Abstract][Full Text] [Related]
5. Covalent binding of acetaminophen to mouse hemoglobin. Identification of major and minor adducts formed in vivo and implications for the nature of the arylating metabolites. Axworthy DB; Hoffmann KJ; Streeter AJ; Calleman CJ; Pascoe GA; Baillie TA Chem Biol Interact; 1988; 68(1-2):99-116. PubMed ID: 3203411 [TBL] [Abstract][Full Text] [Related]
6. A sensitive immunochemical assay for acetaminophen-protein adducts. Roberts DW; Pumford NR; Potter DW; Benson RW; Hinson JA J Pharmacol Exp Ther; 1987 May; 241(2):527-33. PubMed ID: 3572810 [TBL] [Abstract][Full Text] [Related]
7. The microsomal metabolism and site of covalent binding to protein of 3'-hydroxyacetanilide, a nonhepatotoxic positional isomer of acetaminophen. Streeter AJ; Bjorge SM; Axworthy DB; Nelson SD; Baillie TA Drug Metab Dispos; 1984; 12(5):565-76. PubMed ID: 6149906 [TBL] [Abstract][Full Text] [Related]
8. Hepatic protein arylation, glutathione depletion, and metabolite profiles of acetaminophen and a non-hepatotoxic regioisomer, 3'-hydroxyacetanilide, in the mouse. Rashed MS; Myers TG; Nelson SD Drug Metab Dispos; 1990; 18(5):765-70. PubMed ID: 1981734 [TBL] [Abstract][Full Text] [Related]
9. Liquid chromatography/tandem mass spectrometry detection of covalent binding of acetaminophen to human serum albumin. Damsten MC; Commandeur JN; Fidder A; Hulst AG; Touw D; Noort D; Vermeulen NP Drug Metab Dispos; 2007 Aug; 35(8):1408-17. PubMed ID: 17510247 [TBL] [Abstract][Full Text] [Related]
10. Investigations of the N-hydroxylation of 3'-hydroxyacetanilide, a non-hepatotoxic positional isomer of acetaminophen. Rashed MS; Streeter AJ; Nelson SD Drug Metab Dispos; 1989; 17(4):355-9. PubMed ID: 2571471 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of two benzene-derived hemoglobin adducts in vivo in rats. Melikian AA; Prahalad AK; Coleman S Cancer Epidemiol Biomarkers Prev; 1992; 1(4):307-13. PubMed ID: 1303132 [TBL] [Abstract][Full Text] [Related]
12. The covalent binding of acetaminophen to protein. Evidence for cysteine residues as major sites of arylation in vitro. Streeter AJ; Dahlin DC; Nelson SD; Baillie TA Chem Biol Interact; 1984 Mar; 48(3):349-66. PubMed ID: 6713598 [TBL] [Abstract][Full Text] [Related]
13. N2 atom of guanine and N6 atom of adenine residues as sites for covalent binding of metabolically activated 1'-hydroxysafrole to mouse liver DNA in vivo. Phillips DH; Miller JA; Miller EC; Adams B Cancer Res; 1981 Jul; 41(7):2664-71. PubMed ID: 7248936 [TBL] [Abstract][Full Text] [Related]
14. Acid-labile adducts to protein can be used as indicators of the cysteine S-conjugate pathway of trichloroethene metabolism. Eyre RJ; Stevens DK; Parker JC; Bull RJ J Toxicol Environ Health; 1995 Dec; 46(4):443-64. PubMed ID: 8523471 [TBL] [Abstract][Full Text] [Related]
15. Application of CYP102A1M11H as a tool for the generation of protein adducts of reactive drug metabolites. Boerma JS; Vermeulen NP; Commandeur JN Chem Res Toxicol; 2011 Aug; 24(8):1263-74. PubMed ID: 21639118 [TBL] [Abstract][Full Text] [Related]
16. Detection of acetaminophen protein adducts in children with acute liver failure of indeterminate cause. James LP; Alonso EM; Hynan LS; Hinson JA; Davern TJ; Lee WM; Squires RH; Pediatrics; 2006 Sep; 118(3):e676-81. PubMed ID: 16950959 [TBL] [Abstract][Full Text] [Related]
17. Glutamate dehydrogenase covalently binds to a reactive metabolite of acetaminophen. Halmes NC; Hinson JA; Martin BM; Pumford NR Chem Res Toxicol; 1996 Mar; 9(2):541-6. PubMed ID: 8839060 [TBL] [Abstract][Full Text] [Related]
18. Further characterization of the DNA adducts formed by electrophilic esters of the hepatocarcinogens 1'-hydroxysafrole and 1'-hydroxyestragole in vitro and in mouse liver in vivo, including new adducts at C-8 and N-7 of guanine residues. Wiseman RW; Fennell TR; Miller JA; Miller EC Cancer Res; 1985 Jul; 45(7):3096-105. PubMed ID: 4005847 [TBL] [Abstract][Full Text] [Related]
19. Covalent binding of benzidine and N-acetylbenzidine to DNA at the C-8 atom of deoxyguanosine in vivo and in vitro. Martin CN; Beland FA; Roth RW; Kadlubar FF Cancer Res; 1982 Jul; 42(7):2678-86. PubMed ID: 7083160 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of an arylated active site peptide. Dietze EC; Schäfer A; Omichinski JG; Nelson SD Chem Res Toxicol; 1997 Oct; 10(10):1097-103. PubMed ID: 9348431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]