These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3990701)

  • 1. Application of the carcinogenicity prediction and battery selection (CPBS) method to the Gene-Tox data base.
    Pet-Edwards J; Chankong V; Rosenkranz HS; Haimes YY
    Mutat Res; 1985 May; 153(3):187-200. PubMed ID: 3990701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The carcinogenicity prediction and battery selection (CPBS) method: a Bayesian approach.
    Chankong V; Haimes YY; Rosenkranz HS; Pet-Edwards J
    Mutat Res; 1985 May; 153(3):135-66. PubMed ID: 3990699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster analysis in predicting the carcinogenicity of chemicals using short-term assays.
    Pet-Edwards J; Rosenkranz HS; Chankong V; Haimes YY
    Mutat Res; 1985 May; 153(3):167-85. PubMed ID: 3990700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach to identifying specialized batteries of bioassays for specific classes of chemicals: class analysis using mutagenicity and carcinogenicity relationships and phylogenetic concordance and discordance patterns. 1. Composition and analysis of the overall data base. A report of phase II of the U.S. Environmental Protection Agency Gene-Tox Program.
    Ray VA; Kier LD; Kannan KL; Haas RT; Auletta AE; Wassom JS; Nesnow S; Waters MD
    Mutat Res; 1987 May; 185(3):197-241. PubMed ID: 3574331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity.
    Kirkland D; Aardema M; Henderson L; Müller L
    Mutat Res; 2005 Jul; 584(1-2):1-256. PubMed ID: 15979392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence and Bayesian decision theory in the prediction of chemical carcinogens.
    Rosenkranz HS; Mitchell CS; Klopman G
    Mutat Res; 1985; 150(1-2):1-11. PubMed ID: 3889611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carcinogenicity prediction and battery selection procedure: an in-depth analysis of cyclamate and its major metabolite cyclohexylamine.
    Haimes YY; Chankong V; Pet-Edwards J; Rosenkranz HR
    Mol Toxicol; 1987; 1(1):49-60. PubMed ID: 2452976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Which rules for assembling short-term test batteries to predict carcinogenicity?
    Benigni R; Giuliani A
    Mol Toxicol; 1987; 1(2-3):143-66. PubMed ID: 3449755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the carcinogenicity of the aromatic amine derivatives tested in the second UKEMS Collaborative Study.
    Ennever FK; Rosenkranz HS
    Mutagenesis; 1986 Mar; 1(2):119-23. PubMed ID: 3146010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term test results for NTP noncarcinogens: an alternate, more predictive battery.
    Ennever FK; Rosenkranz HS
    Environ Mutagen; 1986; 8(6):849-65. PubMed ID: 3780617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and preliminary analysis of a genotoxicity data base for predicting carcinogens.
    Palajda M; Rosenkranz HS
    Mutat Res; 1985 May; 153(3):79-134. PubMed ID: 3887150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program.
    Ashby J; Tennant RW; Zeiger E; Stasiewicz S
    Mutat Res; 1989 Jun; 223(2):73-103. PubMed ID: 2662004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ability of plant genotoxicity assays to predict carcinogenicity.
    Ennever FK; Andreano G; Rosenkranz HS
    Mutat Res; 1988; 205(1-4):99-105. PubMed ID: 3285201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the genotoxicity of theobromine and caffeine.
    Rosenkranz HS; Ennever FK
    Food Chem Toxicol; 1987 Mar; 25(3):247-51. PubMed ID: 3106176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the carcinogenicity prediction and battery selection method to recent National Toxicology Program short-term test data.
    Ennever FK; Rosenkranz HS
    Environ Mol Mutagen; 1989; 13(4):332-8. PubMed ID: 2737184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the carcinogenic potential of environmental nitropyrenes.
    Rosenkranz HS
    Environ Mol Mutagen; 1987; 10(2):149-56. PubMed ID: 3319607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens II. Further analysis of mammalian cell results, relative predictivity and tumour profiles.
    Kirkland D; Aardema M; Müller L; Makoto H
    Mutat Res; 2006 Sep; 608(1):29-42. PubMed ID: 16769241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The results of assays in Drosophila as indicators of exposure to carcinogens.
    Vogel EW; Graf U; Frei HJ; Nivard MM
    IARC Sci Publ; 1999; (146):427-70. PubMed ID: 10353398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse-specific carcinogens: an assessment of hazard and significance for validation of short-term carcinogenicity bioassays in transgenic mice.
    Battershill JM; Fielder RJ
    Hum Exp Toxicol; 1998 Apr; 17(4):193-205. PubMed ID: 9617631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical carcinogens. A review and analysis of the literature of selected chemicals and the establishment of the Gene-Tox Carcinogen Data Base. A report of the U.S. Environmental Protection Agency Gene-Tox Program.
    Nesnow S; Argus M; Bergman H; Chu K; Frith C; Helmes T; McGaughy R; Ray V; Slaga TJ; Tennant R
    Mutat Res; 1987; 185(1-2):1-195. PubMed ID: 3540654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.