These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3991061)

  • 1. Basal lamina at the site of spinal cord injury in normal, immunotolerant and immunosuppressed rats.
    Feringa ER; Kowalski TF; Vahlsing HL
    Neurosci Lett; 1985 Mar; 54(2-3):225-30. PubMed ID: 3991061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal lamina at the site of spinal cord transection in the rat: an ultrastructural study.
    Feringa ER; Vahlsing HL; Woodward M
    Neurosci Lett; 1984 Oct; 51(3):303-8. PubMed ID: 6521958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord regeneration in rats made immunologically unresponsive to CNS antigens.
    Feringa ER; Nelson KR; Vahlsing HL; Dauser RC
    J Neurol Neurosurg Psychiatry; 1979 Jul; 42(7):642-8. PubMed ID: 479904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal lamina formation at the site of spinal cord transection.
    Feringa ER; Kowalski TF; Vahlsing HL
    Ann Neurol; 1980 Aug; 8(2):148-54. PubMed ID: 6448569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse.
    Seitz A; Aglow E; Heber-Katz E
    J Neurosci Res; 2002 Feb; 67(3):337-45. PubMed ID: 11813238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord transection and subsequent treatment with cyclophosphamide or isobutyl-2-cyanocrylate: associated microvascular abnormalities.
    Matthews MA; Onge MF; Faciane CL; Barrett ML; Gelderd JB
    Adv Neurol; 1978; 20():433-42. PubMed ID: 676907
    [No Abstract]   [Full Text] [Related]  

  • 8. Recovery in rats after spinal cord injury.
    Feringa ER; Kinning WK; Britten AG; Vahlsing HL
    Neurology; 1976 Sep; 26(9):839-43. PubMed ID: 986027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration.
    Weidner N; Grill RJ; Tuszynski MH
    Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenovirus vector-mediated in vivo gene transfer of brain-derived neurotrophic factor (BDNF) promotes rubrospinal axonal regeneration and functional recovery after complete transection of the adult rat spinal cord.
    Koda M; Hashimoto M; Murakami M; Yoshinaga K; Ikeda O; Yamazaki M; Koshizuka S; Kamada T; Moriya H; Shirasawa H; Sakao S; Ino H
    J Neurotrauma; 2004 Mar; 21(3):329-37. PubMed ID: 15115607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord.
    Lu J; Féron F; Mackay-Sim A; Waite PM
    Brain; 2002 Jan; 125(Pt 1):14-21. PubMed ID: 11834589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fink-Heimer/Nauta demonstration of regenerating axons in the rat spinal cord.
    Feringa ER; Davis SW; Vahlsing HL; Shuer LM
    Arch Neurol; 1978 Aug; 35(8):522-6. PubMed ID: 666611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.
    Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC
    J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T; Kawaguchi S; Fujiwara H
    Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensatory projections of primary sensory fibers in lumbar spinal cord after neonatal thoracic spinal transection in rats.
    Takiguchi M; Atobe Y; Kadota T; Funakoshi K
    Neuroscience; 2015 Sep; 304():349-54. PubMed ID: 26208841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.
    Geoffroy CG; Meves JM; Zheng B
    Neurosci Lett; 2017 Jun; 652():41-49. PubMed ID: 27818358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluororuby as a marker for detection of acute axonal injury in rat spinal cord.
    Lu J; Ashwell KW; Hayek R; Waite P
    Brain Res; 2001 Oct; 915(1):118-23. PubMed ID: 11578629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord transection: a quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan or trypsin.
    Matthews MA; St Onge MF; Faciane CL; Gelderd JB
    Neuropathol Appl Neurobiol; 1979; 5(3):161-80. PubMed ID: 471188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.