These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 3991073)

  • 1. The effects of binocular and monocular occlusion on the number of optic nerve axons containing degenerative organelles.
    Ehrlich D; Mills D
    Neurosci Lett; 1985 Mar; 54(2-3):351-6. PubMed ID: 3991073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for self-absorption of terminals by developing axons of retinal ganglion cells in the chick.
    Ehrlich D; Mills D
    Brain Res; 1985 Jan; 349(1-2):285-9. PubMed ID: 3986594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens.
    Mitchell DE
    Philos Trans R Soc Lond B Biol Sci; 1991 Jul; 333(1266):51-79. PubMed ID: 1682958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative study of the development of the optic nerve in rats reared in the dark during early postnatal life.
    Fukui Y; Hayasaka S; Bedi KS; Ozaki HS; Takeuchi Y
    J Anat; 1991 Feb; 174():37-47. PubMed ID: 2032941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of monocular deprivation on unihemispheric sleep in light and dark incubated/reared domestic chicks.
    Quercia A; Bobbo D; Mascetti GG
    Laterality; 2018 Mar; 23(2):166-183. PubMed ID: 28670970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional blood flow in the myopic chick eye during and after form deprivation: a study with radioactively-labelled microspheres.
    Jin N; Stjernschantz J
    Exp Eye Res; 2000 Sep; 71(3):233-8. PubMed ID: 10973732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual deprivation causes myopia in chicks with optic nerve section.
    Troilo D; Gottlieb MD; Wallman J
    Curr Eye Res; 1987 Aug; 6(8):993-9. PubMed ID: 3665562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
    Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE
    Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes.
    Papastergiou GI; Schmid GF; Riva CE; Mendel MJ; Stone RA; Laties AM
    Exp Eye Res; 1998 Feb; 66(2):195-205. PubMed ID: 9533845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permanent deficit of interocular transfer in binocularly deprived cats.
    Zabłocka T; Dobrzecka C
    Acta Neurobiol Exp (Wars); 1986; 46(5-6):281-92. PubMed ID: 3565100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The permanence of the visual recovery that follows reverse occlusion of monocularly deprived kittens.
    Mitchell DE; Murphy KM; Kaye MG
    Invest Ophthalmol Vis Sci; 1984 Aug; 25(8):908-17. PubMed ID: 6746234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preference for binocular concordant visual input in early postnatal development remains despite prior monocular deprivation.
    Mitchell DE; Kennie J; Duffy KR
    Vision Res; 2011 Jun; 51(12):1351-9. PubMed ID: 21540047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hemiretinal form deprivation on central refractive development and posterior eye shape in chicks.
    Chu CH; Deng L; Kee CS
    Vision Res; 2012 Feb; 55():24-31. PubMed ID: 22245708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the optic nerve of the opossum (Didelphis virginiana).
    Kirby MA; Wilson PD; Fischer TM
    Brain Res Dev Brain Res; 1988 Nov; 44(1):37-48. PubMed ID: 3233732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of strabismus and monocular deprivation on the eye preference of neurons in the visual claustrum of the cat.
    Perkel DJ; LeVay S
    J Comp Neurol; 1984 Dec; 230(2):269-77. PubMed ID: 6512021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A special role for binocular visual input during development and as a component of occlusion therapy for treatment of amblyopia.
    Mitchell DE
    Restor Neurol Neurosci; 2008; 26(4-5):425-34. PubMed ID: 18997317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of interchanging hyperopic defocus and form deprivation stimuli in normal and optic nerve-sectioned chicks.
    Choh V; Lew MY; Nadel MW; Wildsoet CF
    Vision Res; 2006 Mar; 46(6-7):1070-9. PubMed ID: 16212999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision development in the monocular individual: implications for the mechanisms of normal binocular vision development and the treatment of infantile esotropia.
    Day S
    Trans Am Ophthalmol Soc; 1995; 93():523-81. PubMed ID: 8719693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the dorsal lateral geniculate nucleus in normal and visually deprived Siamese cats.
    Robertson TW; Hickey TL; Guillery RW
    J Comp Neurol; 1980 Jun; 191(4):573-9. PubMed ID: 7419734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.