BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 3991808)

  • 1. Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855.
    De Paolis A; Mauro ML; Pomponi M; Cardarelli M; Spanò L; Costantino P
    Plasmid; 1985 Jan; 13(1):1-7. PubMed ID: 3991808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of hairy root loci in the T-regions of Agrobacterium rhizogenes Ri plasmids.
    Boulanger F; Berkaloff A; Richaud F
    Plant Mol Biol; 1986 Jul; 6(4):271-9. PubMed ID: 24307326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855.
    Cardarelli M; Spanò L; De Paolis A; Mauro ML; Vitali G; Costantino P
    Plant Mol Biol; 1985 Nov; 5(6):385-91. PubMed ID: 24306992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common organization of the T-DNA genes expressed in plant hairy roots induced by different plasmids of Agrobacterium rhizogenes.
    Combard A; Baucher MF
    Plant Mol Biol; 1988 Nov; 10(6):499-509. PubMed ID: 24277622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segregation of T-DNA copies in the progeny of a regenerant plant from a mannopine-positive hairy root line.
    David C; Tempé J
    Plant Mol Biol; 1987 Nov; 9(6):585-92. PubMed ID: 24277195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the efficiency of cotransformation of the T-DNA of disarmed binary vectors derived from Agrobacterium tumefaciens and the T-DNA of A. rhizogenes.
    Hamill JD; Prescott A; Martin C
    Plant Mol Biol; 1987 Nov; 9(6):573-84. PubMed ID: 24277194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved regions in the T-DNA of different Agrobacterium rhizogenes root-inducing plasmids.
    Filetici P; Spanò L; Costantino P
    Plant Mol Biol; 1987 Jan; 9(1):19-26. PubMed ID: 24276794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes.
    Hamill JD; Parr AJ; Robins RJ; Rhodes MJ
    Plant Cell Rep; 1986 Apr; 5(2):111-4. PubMed ID: 24248047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic transformation of cauliflower (Brassica oleracea L. var. Botrytis) by Agrobacterium rhizogenes.
    David C; Tempé J
    Plant Cell Rep; 1988 Mar; 7(2):88-91. PubMed ID: 24241539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hairy root transformation in alfalfa (Medicago sativa L.).
    Spanò L; Mariotti D; Pezzotti M; Damiani F; Arcioni S
    Theor Appl Genet; 1987 Feb; 73(4):523-30. PubMed ID: 24241108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic transformation ofCatharanthus roseus G. Don byAgrobacterium rhizogenes.
    Brillanceau MH; David C; Tempé J
    Plant Cell Rep; 1989 Feb; 8(2):63-6. PubMed ID: 24232985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides.
    Saito K; Yamazaki M; Shimomura K; Yoshimatsu K; Murakoshi I
    Plant Cell Rep; 1990 Jul; 9(3):121-4. PubMed ID: 24226593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic herbicide-resistant Atropa belladonna using an Ri binary vector and inheritance of the transgenic trait.
    Saito K; Yamazaki M; Anzai H; Yoneyama K; Murakoshi I
    Plant Cell Rep; 1992 Jun; 11(5-6):219-24. PubMed ID: 24203127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector.
    Yamazaki M; Son L; Hayashi T; Morita N; Asamizu T; Mourakoshi I; Saito K
    Plant Cell Rep; 1996 Jan; 15(5):317-21. PubMed ID: 24178349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro.
    Nemoto K; Hara M; Suzuki M; Seki H; Oka A; Muranaka T; Mano Y
    Plant Signal Behav; 2009 Dec; 4(12):1145-7. PubMed ID: 20514230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype.
    Cardarelli M; Mariotti D; Pomponi M; Spanò L; Capone I; Costantino P
    Mol Gen Genet; 1987 Oct; 209(3):475-80. PubMed ID: 17193709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Sensitivity to Auxin is a Common Feature of Hairy Root.
    Shen WH; Davioud E; David C; Barbier-Brygoo H; Tempé J; Guern J
    Plant Physiol; 1990 Oct; 94(2):554-60. PubMed ID: 16667748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hairy roots are more sensitive to auxin than normal roots.
    Shen WH; Petit A; Guern J; Tempé J
    Proc Natl Acad Sci U S A; 1988 May; 85(10):3417-21. PubMed ID: 16593928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the T(R)-region of the Ri plasmid of Agrobacterium rhizogenes.
    Offringa IA; Melchers LS; Regensburg-Tuink AJ; Costantino P; Schilperoort RA; Hooykaas PJ
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6935-9. PubMed ID: 16593762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration.
    Batra J; Dutta A; Singh D; Kumar S; Sen J
    Plant Cell Rep; 2004 Sep; 23(3):148-54. PubMed ID: 15221274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.