These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 3992003)
1. [Specific contribution of dietary polyunsaturated fatty acids of the n-3 series to the development of nervous system membranes]. Bourre JM; Chanez C; Dumont O; Durand G; Faivre A; Nouvelot A; Pascal G; Piciotti M Reprod Nutr Dev (1980); 1985; 25(1B):335-40. PubMed ID: 3992003 [TBL] [Abstract][Full Text] [Related]
2. Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. Bourre JM; Pascal G; Durand G; Masson M; Dumont O; Piciotti M J Neurochem; 1984 Aug; 43(2):342-8. PubMed ID: 6736955 [TBL] [Abstract][Full Text] [Related]
3. Brain phospholipids as dietary source of (n-3) polyunsaturated fatty acids for nervous tissue in the rat. Bourre JM; Dumont O; Durand G J Neurochem; 1993 Jun; 60(6):2018-28. PubMed ID: 8492115 [TBL] [Abstract][Full Text] [Related]
4. Alteration in fatty acid composition of neurons, astrocytes, oligodendrocytes, myelin and synaptosomes in intrauterine malnutrition in rat. Morand O; Chanez C; Masson M; Dumont O; Flexor MA; Baumann N; Bourre JM Ann Nutr Metab; 1982; 26(2):111-20. PubMed ID: 7081952 [TBL] [Abstract][Full Text] [Related]
5. Influence of dietary fat on the lipid composition of rat brain synaptosomal and microsomal membranes. Foot M; Cruz TF; Clandinin MT Biochem J; 1982 Dec; 208(3):631-40. PubMed ID: 7165722 [TBL] [Abstract][Full Text] [Related]
6. Dynamic modulation of mitochondrial inner-membrane lipids in rat heart by dietary fat. Innis SM; Clandinin MT Biochem J; 1981 Jan; 193(1):155-67. PubMed ID: 7305919 [TBL] [Abstract][Full Text] [Related]
7. Recovery of altered fatty acid composition induced by a diet devoid of n-3 fatty acids in myelin, synaptosomes, mitochondria, and microsomes of developing rat brain. Youyou A; Durand G; Pascal G; Piciotti M; Dumont O; Bourre JM J Neurochem; 1986 Jan; 46(1):224-8. PubMed ID: 3940283 [TBL] [Abstract][Full Text] [Related]
8. Astrocytes in culture require docosahexaenoic acid to restore the n-3/n-6 polyunsaturated fatty acid balance in their membrane phospholipids. Champeil-Potokar G; Denis I; Goustard-Langelier B; Alessandri JM; Guesnet P; Lavialle M J Neurosci Res; 2004 Jan; 75(1):96-106. PubMed ID: 14689452 [TBL] [Abstract][Full Text] [Related]
9. Dietary lipids influence the activity of delta 5-desaturase and phospholipid fatty acids in rat enterocyte microsomal membranes. Keelan M; Clandinin MT; Thomson AB Can J Physiol Pharmacol; 1997 Aug; 75(8):1009-14. PubMed ID: 9360016 [TBL] [Abstract][Full Text] [Related]
11. [Effect of thyrotoxicosis on lipid fatty acid composition in various subcellular fractions of the rat brain]. Bliudzin IuA; Vilkova VA; Zakharova LI Vopr Med Khim; 1991; 37(5):63-6. PubMed ID: 1759403 [TBL] [Abstract][Full Text] [Related]
12. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. Bourre JM J Nutr Health Aging; 2004; 8(3):163-74. PubMed ID: 15129302 [TBL] [Abstract][Full Text] [Related]
13. Dietary omega-3 fatty acids and cholesterol modify desaturase activities and fatty acyl constituents of rat intestinal brush border and microsomal membranes of diabetic rats. Keelan M; Thomson AB; Garg ML; Wierzbicki E; Wierzbicki AA; Clandinin MT Diabetes Res; 1994; 26(2):47-66. PubMed ID: 7554726 [TBL] [Abstract][Full Text] [Related]
14. The administration of pig brain phospholipids versus soybean phospholipids in the diet during the period of brain development in the rat results in greater increments of brain docosahexaenoic acid. Bourre JM; Dumont O Neurosci Lett; 2002 Dec; 335(2):129-33. PubMed ID: 12459515 [TBL] [Abstract][Full Text] [Related]
15. [Effects of the essential fatty acid content of the diet on the distribution of polyunsaturated fatty acids in the lipoproteins of the rat pup]. Nouvelot A; Dedonder E; Sezille G; Bourre JM Reprod Nutr Dev (1980); 1985; 25(1B):251-3. PubMed ID: 3991995 [No Abstract] [Full Text] [Related]
16. Dietary n-3 and n-6 fatty acids alter avian metabolism: molecular-species composition of breast-muscle phospholipids. Newman RE; Bryden WL; Fleck E; Ashes JR; Storlien LH; Downing JA Br J Nutr; 2002 Jul; 88(1):19-28. PubMed ID: 12117424 [TBL] [Abstract][Full Text] [Related]
17. Marine lipids: overview "news insights and lipid composition of Lyprinol". Sinclair AJ; Murphy KJ; Li D Allerg Immunol (Paris); 2000 Sep; 32(7):261-71. PubMed ID: 11094639 [TBL] [Abstract][Full Text] [Related]
18. [Free radicals, polyunsaturated fatty acids, cell death, brain aging]. Bourre JM C R Seances Soc Biol Fil; 1988; 182(1):5-36. PubMed ID: 2846129 [TBL] [Abstract][Full Text] [Related]
19. Effects of high erucic acid diet on sphingomyelin biosynthesis in rat lung microsomes. Lecerf J; Bodin JL J Physiol (Paris); 1984; 79(5):345-51. PubMed ID: 6527283 [TBL] [Abstract][Full Text] [Related]
20. Effect of polyunsaturated fatty acids and phospholipids on [3H]-vitamin E incorporation into pulmonary artery endothelial cell membranes. Sekharam KM; Patel JM; Block ER J Cell Physiol; 1990 Dec; 145(3):555-63. PubMed ID: 2273060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]