BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3993766)

  • 1. A new method for determination of relative ion permeabilities in isolated cells.
    Kimmich GA; Randles J; Restrepo D; Montrose M
    Am J Physiol; 1985 May; 248(5 Pt 1):C399-405. PubMed ID: 3993766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SITS-sensitive Cl- conductance pathway in chick intestinal cells.
    Montrose M; Randles J; Kimmich GA
    Am J Physiol; 1987 Nov; 253(5 Pt 1):C693-9. PubMed ID: 3688217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential dependence of the intestinal Na+-dependent sugar transporter.
    Kimmich GA; Randles J; Restrepo D; Montrose M
    Ann N Y Acad Sci; 1985; 456():63-76. PubMed ID: 3911844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine.
    Restrepo D; Kimmich GA
    J Membr Biol; 1985; 87(2):159-72. PubMed ID: 4078884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract]   [Full Text] [Related]  

  • 7. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence.
    Arcangeli A; Olivotto M
    J Cell Physiol; 1986 Apr; 127(1):17-27. PubMed ID: 3457015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative use of weak bases for estimation of cellular pH gradients.
    Montrose MH; Kimmich GA
    Am J Physiol; 1986 Mar; 250(3 Pt 1):C418-22. PubMed ID: 2420195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) spermatozoa: role in the initiation of sperm motility.
    Gatti JL; Billard R; Christen R
    J Cell Physiol; 1990 Jun; 143(3):546-54. PubMed ID: 2358473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commitment to differentiation of murine erythroleukemia cells involves a modulated plasma membrane depolarization through Ca2+-activated K+ channels.
    Arcangeli A; Ricupero L; Olivotto M
    J Cell Physiol; 1987 Sep; 132(3):387-400. PubMed ID: 2443510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells.
    Riley RT; Norred WP; Dorner JW; Cole RJ
    J Toxicol Environ Health; 1985; 15(6):779-88. PubMed ID: 4057282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations.
    Ahmed I; Krishnamoorthy G
    Biochim Biophys Acta; 1990 May; 1024(2):298-306. PubMed ID: 1693858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potential measurements in isolated rat liver plasma membrane vesicles: effect of transmembrane ion concentration gradients.
    Thalhammer T; Peterlik M; Graf J
    Biochim Biophys Acta; 1989 Mar; 979(3):371-4. PubMed ID: 2923890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion permeability of rabbit intestinal brush border membrane vesicles.
    Gunther RD; Schell RE; Wright EM
    J Membr Biol; 1984; 78(2):119-27. PubMed ID: 6716451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution.
    Rugolo M; Lenaz G
    J Bioenerg Biomembr; 1987 Dec; 19(6):705-18. PubMed ID: 3693347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-sugar coupling stoichiometry in chick intestinal cells.
    Kimmich GA; Randles J
    Am J Physiol; 1984 Jul; 247(1 Pt 1):C74-82. PubMed ID: 6331188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology of plasma membrane vesicles.
    Wright EM
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F363-72. PubMed ID: 6372509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of operation of the Na, K-pump on the magnitude of cell membrane potentials and intracellular ion concentrations].
    Prudnikova IF; Chailakhian LM
    Biofizika; 1981; 26(5):822-8. PubMed ID: 7317464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation of membrane potential of Escherichia coli cells induced by macromolecular polylysine.
    Katsu T; Tsuchiya T; Fujita Y
    Biochem Biophys Res Commun; 1984 Jul; 122(1):401-6. PubMed ID: 6378203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.