These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
749 related articles for article (PubMed ID: 39943)
1. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells. Zeidler RB; Kim HD J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943 [TBL] [Abstract][Full Text] [Related]
2. Preferential hemolysis of postnatal calf red cells induced by internal alkalinization. Zeidler R; Kim HD J Gen Physiol; 1977 Sep; 70(3):385-401. PubMed ID: 19557 [TBL] [Abstract][Full Text] [Related]
3. Cation specificity of propranolol-induced changes in RBC membrane permeability: comparative effects in human, dog and cat erythrocytes. Müller-Soyano A; Glader BE J Cell Physiol; 1977 May; 91(2):317-21. PubMed ID: 558987 [TBL] [Abstract][Full Text] [Related]
4. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions. Eskelinen S Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104 [TBL] [Abstract][Full Text] [Related]
6. Butoxyacetic acid-induced hemolysis of rat red blood cells: effect of external osmolarity and cations. Udden MM; Patton CS Toxicol Lett; 2005 Mar; 156(1):81-93. PubMed ID: 15705489 [TBL] [Abstract][Full Text] [Related]
7. Transitory postnatal hemolysis of calf red cells by amino acids. Kim HD J Membr Biol; 1976 Feb; 26(1):71-90. PubMed ID: 3653 [TBL] [Abstract][Full Text] [Related]
8. Characterization of morphological response of red cells in a sucrose solution. Rudenko SV Blood Cells Mol Dis; 2009; 42(3):252-61. PubMed ID: 19249232 [TBL] [Abstract][Full Text] [Related]
9. A chemically unmasked, chloride dependent K+ transport in low K+ sheep red cells: genetic and evolutionary aspects. Lauf PK Prog Clin Biol Res; 1981; 56():13-34. PubMed ID: 7330007 [TBL] [Abstract][Full Text] [Related]
10. Na+ K+ pump and passive K+ transport in large and small red cell populations of anemic high and low K+ sheep. Lauf PK; Valet G J Cell Physiol; 1983 Jul; 116(1):35-44. PubMed ID: 6304125 [TBL] [Abstract][Full Text] [Related]
11. Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes. Wróbel A Bioelectrochemistry; 2008 Aug; 73(2):117-22. PubMed ID: 18486568 [TBL] [Abstract][Full Text] [Related]
12. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling. Gusev GP; Lapin AV; Agulakova NI Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050 [TBL] [Abstract][Full Text] [Related]
13. Cadmium as a tool for studying calcium-dependent cation permeability of the human red blood cell membrane. Skulskii IA; Glasunov VV; Manninen V Gen Physiol Biophys; 1991 Dec; 10(6):549-60. PubMed ID: 1724971 [TBL] [Abstract][Full Text] [Related]
14. Effects of chlordecone and chlordecone alcohol on isolated ovine erythrocytes. Soileau SD; Moreland DE J Toxicol Environ Health; 1988; 24(2):237-49. PubMed ID: 2455063 [TBL] [Abstract][Full Text] [Related]
15. Potassium transport in rabbit erythrocytes. Stewart GW; Blackstock EJ Exp Biol; 1989; 48(3):161-5. PubMed ID: 2721647 [TBL] [Abstract][Full Text] [Related]
16. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes. Brugnara C; de Franceschi L J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125 [TBL] [Abstract][Full Text] [Related]
17. Species-dependent differences in the effect of ionic strength on potassium transport of erythrocytes: the role of lipid composition. Bernhardt I; Seidler G; Ihrig I; Erdmann A Gen Physiol Biophys; 1992 Jun; 11(3):287-99. PubMed ID: 1330813 [TBL] [Abstract][Full Text] [Related]
18. Cation distribution in mammalian red blood cells: interspecies and intraspecies relationships between cellular ATP, potassium, sodium and magnesium concentrations. Wheatley DN; Miseta A; Kellermayer M; Galambos C; Bogner P; Berènyi E; Cameron IL Physiol Chem Phys Med NMR; 1994; 26(1):111-8. PubMed ID: 7938220 [TBL] [Abstract][Full Text] [Related]
19. Comparative physiology of cellular ion and volume regulation. Schmidt-Nielsen B J Exp Zool; 1975 Oct; 194(1):207-19. PubMed ID: 811755 [TBL] [Abstract][Full Text] [Related]
20. Immunological and physiological characteristics of the rapid immune hemolysis of neuraminidase-treated sheep red cells produced by fresh guinea pig serum. Lauf PK J Exp Med; 1975 Oct; 142(4):974-88. PubMed ID: 1185109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]