These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3994346)

  • 1. Uptake, accumulation, and egress of erythromycin by tissue culture cells of human origin.
    Martin JR; Johnson P; Miller MF
    Antimicrob Agents Chemother; 1985 Mar; 27(3):314-9. PubMed ID: 3994346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity, uptake, and subcellular distribution in rat hepatocytes of roxithromycin, a new semisynthetic macrolide, and erythromycin base.
    Villa P; Sassella D; Corada M; Bartosek I
    Antimicrob Agents Chemother; 1988 Oct; 32(10):1541-6. PubMed ID: 3190183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythromycin uptake and accumulation by human polymorphonuclear leukocytes and efficacy of erythromycin in killing ingested Legionella pneumophila.
    Miller MF; Martin JR; Johnson P; Ulrich JT; Rdzok EJ; Billing P
    J Infect Dis; 1984 May; 149(5):714-8. PubMed ID: 6726002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying effects of pH and temperature on (14C)erythromycin uptake into Staphylococcus aureus--relation to antimicrobial activity.
    Dette GA; Knothe H; Kaula S
    Zentralbl Bakteriol Mikrobiol Hyg A; 1987 Jul; 265(3-4):393-403. PubMed ID: 3673345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of erythromycin uptake and release by human lymphocytes and polymorphonuclear leucocytes.
    Dette GA; Knothe H
    J Antimicrob Chemother; 1986 Jul; 18(1):73-82. PubMed ID: 3759725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythromycin--three decades later.
    Straughan JL; Anderson R
    S Afr Med J; 1983 Aug; 64(6):197-201. PubMed ID: 6348968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation and activity of cethromycin (ABT-773) within human polymorphonuclear leucocytes.
    García I; Pascual A; Ballesta S; del Castillo C; Perea EJ
    J Antimicrob Chemother; 2003 Jul; 52(1):24-8. PubMed ID: 12805263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythromycin: a microbial and clinical perspective after 30 years of clinical use (1).
    Washington JA; Wilson WR
    Mayo Clin Proc; 1985 Mar; 60(3):189-203. PubMed ID: 3974301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular accumulation of azithromycin by cultured human fibroblasts.
    Gladue RP; Snider ME
    Antimicrob Agents Chemother; 1990 Jun; 34(6):1056-60. PubMed ID: 2168141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Binding, distribution and efficacy of erythromycin (author's transl)].
    Dette GA
    Infection; 1982; 10 Suppl 2():S92-8. PubMed ID: 7107024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the new ketolide ABT-773 (cethromycin) with human polymorphonuclear neutrophils and the phagocytic cell line PLB-985 in vitro.
    Labro MT; Abdelghaffar H; Babin-Chevaye C
    Antimicrob Agents Chemother; 2004 Apr; 48(4):1096-104. PubMed ID: 15047507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacodynamic studies of moxifloxacin and erythromycin against intracellular Legionella pneumophila in an in vitro kinetic model.
    Tano E; Cars O; Löwdin E
    J Antimicrob Chemother; 2005 Jul; 56(1):240-2. PubMed ID: 15919770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation in gram-postive and gram-negative bacteria as a mechanism of resistance to erythromycin.
    Mao JC; Putterman M
    J Bacteriol; 1968 Mar; 95(3):1111-7. PubMed ID: 4966821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in-vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, TE-031), a new macrolide antimicrobial agent.
    Anderson R; Joone G; van Rensburg CE
    J Antimicrob Chemother; 1988 Dec; 22(6):923-33. PubMed ID: 2977384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of roxithromycin and erythromycin on cellular immune functions in vitro. 1. Uptake of 3H-macrolides by human macrophages.
    Cuffini AM; Tullio V; Cimino F; Carlone NA
    Microbios; 1989; 57(232-233):167-78. PubMed ID: 2739585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new macrolide, TE-031 (A-56268), in treatment of experimental Legionnaires' disease.
    Kohno S; Koga H; Yamaguchi K; Masaki M; Inoue Y; Dotsu Y; Masuyama Y; Hayashi T; Hirota M; Saito A
    J Antimicrob Chemother; 1989 Sep; 24(3):397-405. PubMed ID: 2530201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two types of binding of erythromycin to ribosomes from antibiotic-sensitive and -resistant Bacillus subtilis 168.
    Oleinick NL; Corcoran JW
    J Biol Chem; 1969 Feb; 244(4):727-35. PubMed ID: 4976759
    [No Abstract]   [Full Text] [Related]  

  • 18. Phagocyte uptake and transport of azithromycin.
    McDonald PJ; Pruul H
    Eur J Clin Microbiol Infect Dis; 1991 Oct; 10(10):828-33. PubMed ID: 1662626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular multiplication of Legionnaires' disease bacteria (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin.
    Horwitz MA; Silverstein SC
    J Clin Invest; 1983 Jan; 71(1):15-26. PubMed ID: 6848556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of activities of azithromycin, erythromycin, and tetracycline against Chlamydia trachomatis and Chlamydia pneumoniae.
    Welsh LE; Gaydos CA; Quinn TC
    Antimicrob Agents Chemother; 1992 Feb; 36(2):291-4. PubMed ID: 1318677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.