These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3994396)

  • 1. Preparation of functionally intact monomers by limited disulfide reduction of human plasma fibronectin dimers.
    Homandberg GA; Amrani DL; Evans DB; Kane CM; Ankel E; Mosesson MW
    Arch Biochem Biophys; 1985 May; 238(2):652-63. PubMed ID: 3994396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and analysis of the major forms of plasma fibronectin.
    Amrani DL; Homandberg GA; Tooney NM; Wolfenstein-Todel C; Mosesson MW
    Biochim Biophys Acta; 1983 Oct; 748(2):308-20. PubMed ID: 6138099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free formation of disulfide-bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition.
    Sakai K; Fujii T; Hayashi T
    J Biochem; 1994 Mar; 115(3):415-21. PubMed ID: 8056752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced structural changes in the collagen/gelatin binding domain of fibronectin.
    Miles AM; Brew SA; Ingham KC; Smith RL
    Biochemistry; 1995 May; 34(21):6941-6. PubMed ID: 7766603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain structure of human plasma and cellular fibronectin. Use of a monoclonal antibody and heparin affinity to identify three different subunit chains.
    Click EM; Balian G
    Biochemistry; 1985 Nov; 24(23):6685-96. PubMed ID: 2417623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human plasma fibronectin. Demonstration of structural differences between the A- and B-chains in the III CS region.
    Tressel T; McCarthy JB; Calaycay J; Lee TD; Legesse K; Shively JE; Pande H
    Biochem J; 1991 Mar; 274 ( Pt 3)(Pt 3):731-8. PubMed ID: 2012601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of porcine plasma fibronectin and its fragmentation by porcine liver cathepsin B.
    Isemura M; Yosizawa Z; Takahashi K; Kosaka H; Kojima N; Ono T
    J Biochem; 1981 Jul; 90(1):1-9. PubMed ID: 6457032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two plasma fibronectin fragments with different gelatin-binding properties.
    Griffin CA; Calaycay J; Shively JE; Smith RL
    Thromb Res; 1986 Aug; 43(4):469-77. PubMed ID: 3532418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human plasma fibronectin structure probed by steady-state fluorescence polarization: evidence for a rigid oblate structure.
    Benecky MJ; Kolvenbach CG; Wine RW; DiOrio JP; Mosesson MW
    Biochemistry; 1990 Mar; 29(12):3082-91. PubMed ID: 2337580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary structure of human plasma fibronectin. Characterization of a 31,000-dalton fragment from the COOH-terminal region containing a free sulfhydryl group and a fibrin-binding site.
    Garcia-Pardo A; Pearlstein E; Frangione B
    J Biol Chem; 1985 Aug; 260(18):10320-5. PubMed ID: 4019516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that binding to the carboxyl-terminal heparin-binding domain (Hep II) dominates the interaction between plasma fibronectin and heparin.
    Benecky MJ; Kolvenbach CG; Amrani DL; Mosesson MW
    Biochemistry; 1988 Sep; 27(19):7565-71. PubMed ID: 3207688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible associations between human plasma fibronectin and fibrinogen γγ' heterodimer observed by high pressure size exclusion chromatography and dynamic light scattering.
    Fabian FM; Ismail AEA; Wang O; Lei Y; Velander WH
    Anal Biochem; 2020 Jun; 598():113701. PubMed ID: 32268127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments.
    McDonald JA; Kelley DG
    J Biol Chem; 1980 Sep; 255(18):8848-58. PubMed ID: 6902725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early and late cathepsin D-derived fragments of fibronectin containing the C-terminal interchain disulfide cross-link.
    Richter H; Hörmann H
    Hoppe Seylers Z Physiol Chem; 1982 Apr; 363(4):351-64. PubMed ID: 7076131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan-binding domain.
    Lewandowska K; Choi HU; Rosenberg LC; Zardi L; Culp LA
    J Cell Biol; 1987 Sep; 105(3):1443-54. PubMed ID: 2958485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a 59 kDa gelatin-binding fragment of buffalo plasma fibronectin.
    Ahmed N; Swamy N
    Indian J Biochem Biophys; 2002 Apr; 39(2):113-8. PubMed ID: 22896898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide-bonded dimerization of fibronectin in vitro.
    Vartio T; Kuusela P
    Eur J Biochem; 1991 Dec; 202(2):597-604. PubMed ID: 1761059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdomain cleavage of plasma fibronectin by zinc-metalloproteinase from Serratia marcescens.
    Molla A; Tanase S; Hong YM; Maeda H
    Biochim Biophys Acta; 1988 Jun; 955(1):77-85. PubMed ID: 3289620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further localization of the gelatin-binding determinants within fibronectin. Active fragments devoid of type II homologous repeat modules.
    Ingham KC; Brew SA; Migliorini MM
    J Biol Chem; 1989 Oct; 264(29):16977-80. PubMed ID: 2507535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional methionines in the collagen/gelatin binding domain of plasma fibronectin: effects of chemical modification by chloramine T.
    Miles AM; Smith RL
    Biochemistry; 1993 Aug; 32(32):8168-78. PubMed ID: 8347617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.