These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3994663)

  • 1. Aldehydes or dicarbonyls in non-enzymic glycosylation of proteins.
    Beswick HT; Harding JJ
    Biochem J; 1985 Mar; 226(2):385-9. PubMed ID: 3994663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schiff's base formation in the lens protein gamma-crystallin.
    Wistow G; Alligood J; Shinohara T; Somers R
    FEBS Lett; 1983 Sep; 161(2):221-4. PubMed ID: 6617874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The non-enzymic glycosylation of bovine lens proteins by glucosamine and its inhibition by aspirin, ibuprofen and glutathione.
    Ajiboye R; Harding JJ
    Exp Eye Res; 1989 Jul; 49(1):31-41. PubMed ID: 2759189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of glucose, galactose and pyridoxal phosphate to lens crystallins.
    Ganea E; Rixon KC; Harding JJ
    Biochim Biophys Acta; 1994 Jul; 1226(3):286-90. PubMed ID: 8054360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of aminoguanidine on the glycation (non-enzymic glycosylation) of lens proteins.
    Lewis BS; Harding JJ
    Exp Eye Res; 1990 May; 50(5):463-7. PubMed ID: 2373149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Oxidative stress and diabetes mellitus: a possible role of alpha-dicarbonyl compounds in free radical formation].
    Araki A
    Nihon Ronen Igakkai Zasshi; 1997 Sep; 34(9):716-20. PubMed ID: 9430981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays.
    Kumar MS; Reddy PY; Kumar PA; Surolia I; Reddy GB
    Biochem J; 2004 Apr; 379(Pt 2):273-82. PubMed ID: 14711370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions.
    Yan H; Willis AC; Harding JJ
    Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-enzymic glycosylation (glycation) of lens proteins by galactose and protection by aspirin and reduced glutathione.
    Huby R; Harding JJ
    Exp Eye Res; 1988 Jul; 47(1):53-9. PubMed ID: 3409987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the control and inhibition of glycation-the role of the guanidine reaction center with aldehydic and diketonic dicarbonyls. A mass spectrometry study.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Oct; 41(10):1346-68. PubMed ID: 17039581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometry.
    Smith JB; Sun Y; Smith DL; Green B
    Protein Sci; 1992 May; 1(5):601-8. PubMed ID: 1304359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrease in glycation of lens proteins by lysine and glycine by scavenging of glucose and possible mitigation of cataractogenesis.
    Ramakrishnan S; Sulochana KN
    Exp Eye Res; 1993 Nov; 57(5):623-8. PubMed ID: 8282049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of possible sites for posttranslational modifications in human gamma crystallins: effect of glycation on the structure of human gamma-B-crystallin as analyzed by molecular modeling.
    Salim A; Bano A; Zaidi ZH
    Proteins; 2003 Nov; 53(2):162-73. PubMed ID: 14517968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldehydes and dicarbonyls in non-enzymic glycosylation of proteins.
    Wolff SP; Dean RT
    Biochem J; 1988 Jan; 249(2):618-9. PubMed ID: 3342033
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of modification sites in glycated crystallin in vitro and in vivo.
    Kielmas M; Kijewska M; Kluczyk A; Oficjalska J; Gołębiewska B; Stefanowicz P; Szewczuk Z
    Anal Bioanal Chem; 2015 Mar; 407(9):2557-67. PubMed ID: 25636230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic cataract formation: potential role of glycosylation of lens crystallins.
    Stevens VJ; Rouzer CA; Monnier VM; Cerami A
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2918-22. PubMed ID: 275862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes induced in lens alpha- and gamma-crystallins by modification with glucose 6-phosphate. Implications for cataract.
    Beswick HT; Harding JJ
    Biochem J; 1987 Sep; 246(3):761-9. PubMed ID: 3689329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of a novel AGE-compound derived from lysine and 3-deoxyglucosone.
    Skovsted IC; Christensen M; Breinholt J; Mortensen SB
    Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1159-63. PubMed ID: 9846898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetyl- L -carnitine decreases glycation of lens proteins: in vitro studies.
    Swamy-Mruthinti S; Carter AL
    Exp Eye Res; 1999 Jul; 69(1):109-15. PubMed ID: 10375455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.