BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3994668)

  • 41. Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type-specific analysis.
    Komiya Y; Sawano S; Mashima D; Ichitsubo R; Nakamura M; Tatsumi R; Ikeuchi Y; Mizunoya W
    J Muscle Res Cell Motil; 2017 Apr; 38(2):163-173. PubMed ID: 28281032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential activation of mitogen-activated protein kinase signalling pathways by isometric contractions in isolated slow- and fast-twitch rat skeletal muscle.
    Wretman C; Widegren U; Lionikas A; Westerblad H; Henriksson J
    Acta Physiol Scand; 2000 Sep; 170(1):45-9. PubMed ID: 10971222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical muscle activity pattern and transcriptional and posttranscriptional mechanisms regulate PKA subunit expression in rat skeletal muscle.
    Hoover F; Kalhovde JM; Dahle MK; Skålhegg B; Taskén K; Lømo T
    Mol Cell Neurosci; 2002 Feb; 19(2):125-37. PubMed ID: 11860267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of denervation on cyclic nucleotide metabolism in different types of skeletal muscle of the rat.
    McLane JA; Held IR
    J Neurosci Res; 1981; 6(3):327-36. PubMed ID: 6271985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression of cAMP-responsive element binding proteins (CREBs) in fast- and slow-twitch muscles: a signaling pathway to account for the synaptic expression of collagen-tailed subunit (ColQ) of acetylcholinesterase at the rat neuromuscular junction.
    Choi RC; Chen VP; Luk WK; Yung AW; Ng AH; Dong TT; Tsim KW
    Chem Biol Interact; 2013 Mar; 203(1):282-6. PubMed ID: 23159887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corticotropin releasing factor 2 receptor agonists reduce the denervation-induced loss of rat skeletal muscle mass and force and increase non-atrophying skeletal muscle mass and force.
    Hinkle RT; Donnelly E; Cody DB; Bauer MB; Sheldon RJ; Isfort RJ
    J Muscle Res Cell Motil; 2004; 25(7):539-47. PubMed ID: 15711884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fibre type composition of soleus and extensor digitorum longus muscles in normal female inbred Lewis rats.
    Soukup T; Zacharová G; Smerdu V
    Acta Histochem; 2002; 104(4):399-405. PubMed ID: 12553710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay.
    Kopylova GV; Shchepkin DV; Nikitina LV
    Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inflammatory response during slow- and fast-twitch muscle regeneration.
    Zimowska M; Kasprzycka P; Bocian K; Delaney K; Jung P; Kuchcinska K; Kaczmarska K; Gladysz D; Streminska W; Ciemerych MA
    Muscle Nerve; 2017 Mar; 55(3):400-409. PubMed ID: 27396429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of polypeptides associated with sarcolemmal vesicles enriched in orthogonal arrays.
    Hatton JD; Cox GF; Miller AL; Nichol JA; Ellisman MH
    Biochim Biophys Acta; 1987 Nov; 904(2):373-80. PubMed ID: 2959324
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Renaturation of skeletal muscle tropomyosin: implications for in vivo assembly.
    Brown HR; Schachat FH
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2359-63. PubMed ID: 3857586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermostability of tropomyosins from the fast skeletal muscles of tropical fish species.
    Huang MC; Lee CL; Ochiai Y; Watabe S
    Fish Physiol Biochem; 2019 Jun; 45(3):1189-1202. PubMed ID: 30945041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular heterogeneity of histochemical fibre types: a comparison of fast fibres.
    Moore GE; Schachat FH
    J Muscle Res Cell Motil; 1985 Aug; 6(4):513-24. PubMed ID: 4066929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of alpha and beta tropomyosin subunits during early myogenesis in somites and limb buds of chick embryos.
    Delezoide AL; Pavlovitch JH; Nato F; Fiszman MY
    Cell Tissue Res; 1989 Jun; 256(3):631-4. PubMed ID: 2743399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dimerization of the polypeptide chains of skeletal muscle tropomyosin.
    Dabrowska R; Sosiński J; Drabikowski W
    Biochim Biophys Acta; 1983 Mar; 743(3):331-7. PubMed ID: 6830815
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of tropomyosin from fish muscle.
    Heeley DH; Hong C
    Comp Biochem Physiol Biochem Mol Biol; 1994 May; 108(1):95-106. PubMed ID: 8205394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tropomyosin from adult human skeletal muscle is partially phosphorylated.
    Edwards BF; Romero-Herrera AE
    Comp Biochem Physiol B; 1983; 76(2):373-5. PubMed ID: 6641166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Persistence of the expression of beta-tropomyosin in dystrophic avian pectoral muscle.
    Feit H; Domke R
    Cell Motil; 1982; 2(3):309-15. PubMed ID: 7172223
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Denervated chicken breast muscle displays discoordinate regulation and differential patterns of expression of alpha f and beta tropomyosin genes.
    Gupta MP; Wiesner RJ; Mouly V; Zak R; Lemonnier M
    J Muscle Res Cell Motil; 1993 Aug; 14(4):377-84. PubMed ID: 8227295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinct alpha-tropomyosin mRNA sequences in chicken skeletal muscle.
    MacLeod AR
    Eur J Biochem; 1982 Aug; 126(2):293-7. PubMed ID: 7128591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.