BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3994700)

  • 21. FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation.
    Nagao M; Tanaka K
    J Biol Chem; 1992 Sep; 267(25):17925-32. PubMed ID: 1517228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunoprecipitation and electrophoretic analysis of four human acyl-CoA dehydrogenases and electron transfer flavoprotein using antibodies raised against the corresponding rat enzymes.
    Ikeda Y; Tanaka K
    Biochem Med Metab Biol; 1987 Jun; 37(3):329-34. PubMed ID: 3606893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic defects of acyl-CoA dehydrogenases: studies using an electron transfer flavoprotein reduction assay.
    Hale DE; Stanley CA; Coates PM
    Prog Clin Biol Res; 1990; 321():333-48. PubMed ID: 2326298
    [No Abstract]   [Full Text] [Related]  

  • 24. Defects of fatty-acid oxidation in muscle.
    Angelini C
    Baillieres Clin Endocrinol Metab; 1990 Sep; 4(3):561-82. PubMed ID: 2268228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase.
    Beckmann JD; Frerman FE
    Biochemistry; 1985 Jul; 24(15):3922-5. PubMed ID: 2996585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
    Zhang J; Frerman FE; Kim JJ
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16212-7. PubMed ID: 17050691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Newly identified forms of electron transfer flavoprotein deficiency in two patients with glutaric aciduria type II.
    Yamaguchi S; Orii T; Suzuki Y; Maeda K; Oshima M; Hashimoto T
    Pediatr Res; 1991 Jan; 29(1):60-3. PubMed ID: 2000260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Glutaric acidemia type II].
    Tanaka K; Ikeda Y; Finocchiaro G; Ito M
    Tanpakushitsu Kakusan Koso; 1988 Apr; 33(5):568-74. PubMed ID: 3270865
    [No Abstract]   [Full Text] [Related]  

  • 29. Human cDNA encoding ETF dehydrogenase (ETF:ubiquinone oxido-reductase), and mutations in glutaric acidemia type II.
    Goodman SI; Bemelen KF; Frerman FE
    Prog Clin Biol Res; 1992; 375():567-72. PubMed ID: 1438400
    [No Abstract]   [Full Text] [Related]  

  • 30. Multiple acyl-coenzyme A dehydrogenase deficiency: diagnosis by acyl-carnitine analysis of a 12-year-old newborn screening card.
    Poplawski NK; Ranieri E; Harrison JR; Fletcher JM
    J Pediatr; 1999 Jun; 134(6):764-6. PubMed ID: 10356148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutaric aciduria type II: in vitro studies on substrate oxidation, acyl-CoA dehydrogenases, and electron-transferring flavoprotein in cultured skin fibroblasts.
    Rhead W; Mantagos S; Tanaka K
    Pediatr Res; 1980 Dec; 14(12):1339-42. PubMed ID: 7208150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron transfer flavoprotein and electron transfer flavoprotein-ubiquinone oxidoreductase.
    Frerman FE
    Prog Clin Biol Res; 1990; 321():69-77. PubMed ID: 2183243
    [No Abstract]   [Full Text] [Related]  

  • 33. Expression of human electron transfer flavoprotein-ubiquinone oxidoreductase from a baculovirus vector: kinetic and spectral characterization of the human protein.
    Simkovic M; Degala GD; Eaton SS; Frerman FE
    Biochem J; 2002 Jun; 364(Pt 3):659-67. PubMed ID: 12049629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a mutation that abolishes quinone reduction by electron transfer flavoprotein-ubiquinone oxidoreductase.
    Beard SE; Goodman SI; Bemelen K; Frerman FE
    Hum Mol Genet; 1995 Feb; 4(2):157-61. PubMed ID: 7757062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer flavoprotein deficiency: functional and molecular aspects.
    Schiff M; Froissart R; Olsen RK; Acquaviva C; Vianey-Saban C
    Mol Genet Metab; 2006 Jun; 88(2):153-8. PubMed ID: 16510302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prenatal diagnosis of glutaric acidemias.
    Goodman SI
    Prenat Diagn; 2001 Dec; 21(13):1167-8. PubMed ID: 11787045
    [No Abstract]   [Full Text] [Related]  

  • 37. Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency.
    Cornelius N; Frerman FE; Corydon TJ; Palmfeldt J; Bross P; Gregersen N; Olsen RK
    Hum Mol Genet; 2012 Aug; 21(15):3435-48. PubMed ID: 22611163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation.
    Bross P; Pedersen P; Winter V; Nyholm M; Johansen BN; Olsen RK; Corydon MJ; Andresen BS; Eiberg H; Kolvraa S; Gregersen N
    Mol Genet Metab; 1999 Jun; 67(2):138-47. PubMed ID: 10356313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid β-oxidation, and attenuates NLRP3 inflammasome activation.
    Chokchaiwong S; Kuo YT; Lin SH; Hsu YC; Hsu SP; Liu YT; Chou AJ; Kao SH
    Free Radic Res; 2018 Dec; 52(11-12):1445-1455. PubMed ID: 30003820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic defect of medium-chain acyl-coenzyme A dehydrogenase deficiency. Lack of both cofactor responsiveness and biochemical heterogeneity in eight patients.
    Amendt BA; Rhead WJ
    J Clin Invest; 1985 Sep; 76(3):963-9. PubMed ID: 3840178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.