These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 3994725)

  • 1. Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH.
    Cabiaux V; Lorge P; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biochem Biophys Res Commun; 1985 Apr; 128(2):840-9. PubMed ID: 3994725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid interaction of diphtheria toxin and mutants with altered fragment B. 1. Liposome aggregation and fusion.
    Papini E; Colonna R; Cusinato F; Montecucco C; Tomasi M; Rappuoli R
    Eur J Biochem; 1987 Dec; 169(3):629-35. PubMed ID: 3691511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: possible involvement of the P site and the NAD+ binding site.
    Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biosci Rep; 1985 Mar; 5(3):243-50. PubMed ID: 4016224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation.
    Menestrina G; Forti S; Gambale F
    Biophys J; 1989 Mar; 55(3):393-405. PubMed ID: 2467697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes.
    Hoch DH; Romero-Mira M; Ehrlich BE; Finkelstein A; DasGupta BR; Simpson LL
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1692-6. PubMed ID: 3856850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid interaction of tetanus neurotoxin. A calorimetric and fluorescence spectroscopy study.
    Calappi E; Masserini M; Schiavo G; Montecucco C; Tettamanti G
    FEBS Lett; 1992 Sep; 309(2):107-10. PubMed ID: 1505672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic evidence of tetanus toxin translocation domain bilayer-induced refolding and insertion.
    O'Neil PT; Vasquez-Montes V; Swint-Kruse L; Baldwin MR; Ladokhin AS
    Biophys J; 2021 Nov; 120(21):4763-4776. PubMed ID: 34555358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetanus toxin fragment forms channels in lipid vesicles at low pH.
    Boquet P; Duflot E
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7614-8. PubMed ID: 6296842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis.
    Roa M; Boquet P
    J Biol Chem; 1985 Jun; 260(11):6827-35. PubMed ID: 3922981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low pH induces a hydrophobic domain in the tetanus toxin molecule.
    Boquet P; Duflot E; Hauttecoeur B
    Eur J Biochem; 1984 Oct; 144(2):339-44. PubMed ID: 6489333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diphtheria toxin and its mutant crm 197 differ in their interaction with lipids.
    Papini E; Colonna R; Schiavo G; Cusinato F; Tomasi M; Rappuoli R; Montecucco C
    FEBS Lett; 1987 May; 215(1):73-8. PubMed ID: 3569541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosomal proteolysis of diphtheria toxin without toxin translocation into the cytosol of rat liver in vivo.
    El Hage T; Decottignies P; Authier F
    FEBS J; 2008 Apr; 275(8):1708-22. PubMed ID: 18312597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography of diphtheria toxin A chain inserted into lipid vesicles.
    Hayashibara M; London E
    Biochemistry; 2005 Feb; 44(6):2183-96. PubMed ID: 15697244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes.
    Hajduch E; Aledo JC; Watts C; Hundal HS
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):233-8. PubMed ID: 9003424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular drug transporters with diphtheria toxin translocation domain form edged holes in lipid membranes.
    Khramtsov YV; Rokitskaya TI; Rosenkranz AA; Trusov GA; Gnuchev NV; Antonenko YN; Sobolev AS
    J Control Release; 2008 Jun; 128(3):241-7. PubMed ID: 18442865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of diphtheria toxin with model membranes.
    Chung LA; London E
    Biochemistry; 1988 Feb; 27(4):1245-53. PubMed ID: 3365385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule.
    Beise J; Hahnen J; Andersen-Beckh B; Dreyer F
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jan; 349(1):66-73. PubMed ID: 8139702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers.
    Schiavo G; Demel R; Montecucco C
    Eur J Biochem; 1991 Aug; 199(3):705-11. PubMed ID: 1868854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane interactions of tetanus and botulinum neurotoxins: a photolabelling study with photoactivatable phospholipids.
    Schiavo G; Boquet P; Dasgupta BR; Montecucco C
    J Physiol (Paris); 1990; 84(2):180-7. PubMed ID: 2290132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.