These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3994738)

  • 1. Red blood cell oxidative metabolism induced by hydroxypyruvaldehyde.
    Thornalley PJ; Stern A
    Biochem Pharmacol; 1985 Apr; 34(8):1157-64. PubMed ID: 3994738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of glyceraldehyde on red cells. Haemoglobin status, oxidative metabolism and glycolysis.
    Thornalley PJ; Stern A
    Biochim Biophys Acta; 1984 Jul; 804(3):308-23. PubMed ID: 6743693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing the metabolic pathways of glucose in human erythrocytes.
    Ninfali P; Piatti E; Palma F
    Ital J Biochem; 1982; 31(4):269-77. PubMed ID: 6818178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the glyoxalase system in human red blood cells by glucose in vitro.
    Thornalley PJ
    Biochem J; 1988 Sep; 254(3):751-5. PubMed ID: 3196289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1984 May; 33(9):1417-21. PubMed ID: 6732859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of aromatic thiols in the human red blood cell.
    Amrolia P; Sullivan SG; Stern A; Munday R
    J Appl Toxicol; 1989 Apr; 9(2):113-8. PubMed ID: 2715566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate.
    Dykens JA; Sullivan SG; Stern A
    Biochem Pharmacol; 1989 May; 38(10):1555-62. PubMed ID: 2525040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of rat red blood cell glycolysis by phenylhydrazine hydrochloride.
    Kostić MM; Dragićević L; Zirković R; Müller M; Rapoport SM
    Biomed Biochim Acta; 1990; 49(1):17-25. PubMed ID: 2141786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox state, antioxidative activity and lipid peroxidation in erythrocytes and plasma of chronic ambulatory peritoneal dialysis patients.
    Canestrari F; Buoncristiani U; Galli F; Giorgini A; Albertini MC; Carobi C; Pascucci M; Bossù M
    Clin Chim Acta; 1995 Jan; 234(1-2):127-36. PubMed ID: 7758212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of red cell hexose monophosphate shunt after sulfhydryl inhibition.
    Sagone AL; Balcerzak SP; Metz EN
    Blood; 1975 Jan; 45(1):49-54. PubMed ID: 803110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the phenacetin metabolite 4-nitrosophenetol on glycolysis and pentose phosphate pathway in human red cells.
    Gallemann D; Eyer P
    Biol Chem Hoppe Seyler; 1993 Jan; 374(1):37-49. PubMed ID: 8439396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phenylhydrazine on red blood cell metabolism.
    Magnani M; Rossi L; Cucchiarini L; Stocchi V; Fornaini G
    Cell Biochem Funct; 1988 Jul; 6(3):175-82. PubMed ID: 3409478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the glycolytic pathway by methylglyoxal in human platelets.
    Leoncini G; Maresca M; Buzzi E
    Cell Biochem Funct; 1989 Jan; 7(1):65-70. PubMed ID: 2752537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nitrone spin trapping agents on red cell glucose metabolism.
    Thornalley PJ; Stern A
    Free Radic Res Commun; 1985; 1(2):111-7. PubMed ID: 3880276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of hydrogen peroxide during precipitation of red cells with perchloric acid. A cautionary note for precise determination of pyruvate, GSH, and NAD(P)H.
    Gallemann D; Eyer P
    Anal Biochem; 1990 Dec; 191(2):347-53. PubMed ID: 1964767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH production in the oxidative pentose phosphate pathway as source of reducing equivalents in glycolysis of human red cells in vitro.
    Rapoport I; Elsner R; Müller M; Dumdey R; Rapoport S
    Acta Biol Med Ger; 1979; 38(7):901-8. PubMed ID: 44419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primaquine-mediated oxidative metabolism in the human red cell. Lack of dependence on oxyhemoglobin, H2O2 formation, or glutathione turnover.
    Kelman SN; Sullivan SG; Stern A
    Biochem Pharmacol; 1982 Jul; 31(14):2409-14. PubMed ID: 7126253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.