BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3994738)

  • 1. Red blood cell oxidative metabolism induced by hydroxypyruvaldehyde.
    Thornalley PJ; Stern A
    Biochem Pharmacol; 1985 Apr; 34(8):1157-64. PubMed ID: 3994738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of glyceraldehyde on red cells. Haemoglobin status, oxidative metabolism and glycolysis.
    Thornalley PJ; Stern A
    Biochim Biophys Acta; 1984 Jul; 804(3):308-23. PubMed ID: 6743693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing the metabolic pathways of glucose in human erythrocytes.
    Ninfali P; Piatti E; Palma F
    Ital J Biochem; 1982; 31(4):269-77. PubMed ID: 6818178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the glyoxalase system in human red blood cells by glucose in vitro.
    Thornalley PJ
    Biochem J; 1988 Sep; 254(3):751-5. PubMed ID: 3196289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1984 May; 33(9):1417-21. PubMed ID: 6732859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of aromatic thiols in the human red blood cell.
    Amrolia P; Sullivan SG; Stern A; Munday R
    J Appl Toxicol; 1989 Apr; 9(2):113-8. PubMed ID: 2715566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate.
    Dykens JA; Sullivan SG; Stern A
    Biochem Pharmacol; 1989 May; 38(10):1555-62. PubMed ID: 2525040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of rat red blood cell glycolysis by phenylhydrazine hydrochloride.
    Kostić MM; Dragićević L; Zirković R; Müller M; Rapoport SM
    Biomed Biochim Acta; 1990; 49(1):17-25. PubMed ID: 2141786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox state, antioxidative activity and lipid peroxidation in erythrocytes and plasma of chronic ambulatory peritoneal dialysis patients.
    Canestrari F; Buoncristiani U; Galli F; Giorgini A; Albertini MC; Carobi C; Pascucci M; Bossù M
    Clin Chim Acta; 1995 Jan; 234(1-2):127-36. PubMed ID: 7758212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of red cell hexose monophosphate shunt after sulfhydryl inhibition.
    Sagone AL; Balcerzak SP; Metz EN
    Blood; 1975 Jan; 45(1):49-54. PubMed ID: 803110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the phenacetin metabolite 4-nitrosophenetol on glycolysis and pentose phosphate pathway in human red cells.
    Gallemann D; Eyer P
    Biol Chem Hoppe Seyler; 1993 Jan; 374(1):37-49. PubMed ID: 8439396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phenylhydrazine on red blood cell metabolism.
    Magnani M; Rossi L; Cucchiarini L; Stocchi V; Fornaini G
    Cell Biochem Funct; 1988 Jul; 6(3):175-82. PubMed ID: 3409478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the glycolytic pathway by methylglyoxal in human platelets.
    Leoncini G; Maresca M; Buzzi E
    Cell Biochem Funct; 1989 Jan; 7(1):65-70. PubMed ID: 2752537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nitrone spin trapping agents on red cell glucose metabolism.
    Thornalley PJ; Stern A
    Free Radic Res Commun; 1985; 1(2):111-7. PubMed ID: 3880276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of hydrogen peroxide during precipitation of red cells with perchloric acid. A cautionary note for precise determination of pyruvate, GSH, and NAD(P)H.
    Gallemann D; Eyer P
    Anal Biochem; 1990 Dec; 191(2):347-53. PubMed ID: 1964767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH production in the oxidative pentose phosphate pathway as source of reducing equivalents in glycolysis of human red cells in vitro.
    Rapoport I; Elsner R; Müller M; Dumdey R; Rapoport S
    Acta Biol Med Ger; 1979; 38(7):901-8. PubMed ID: 44419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primaquine-mediated oxidative metabolism in the human red cell. Lack of dependence on oxyhemoglobin, H2O2 formation, or glutathione turnover.
    Kelman SN; Sullivan SG; Stern A
    Biochem Pharmacol; 1982 Jul; 31(14):2409-14. PubMed ID: 7126253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.