These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 3994997)
1. Phosphorus-31 nuclear magnetic resonance of highly oriented DNA fibers. 1. Static geometry of DNA double helices. Shindo H; Fujiwara T; Akutsu H; Matsumoto U; Kyogoku Y Biochemistry; 1985 Feb; 24(4):887-95. PubMed ID: 3994997 [TBL] [Abstract][Full Text] [Related]
2. Geometry of the phosphodiester backbone in the A form of deoxyribonucleic acid determined by phosphorus-31 nuclear magnetic resonance spectroscopy. Shindo H; Wooten JB; Zimmerman SB Biochemistry; 1981 Feb; 20(4):745-50. PubMed ID: 7213610 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus-31 nuclear magnetic resonance of highly oriented DNA fibers. 2. Molecular motions in hydrated DNA. Fujiwara T; Shindo H Biochemistry; 1985 Feb; 24(4):896-902. PubMed ID: 3994998 [TBL] [Abstract][Full Text] [Related]
4. Backbone geometry of oriented DNA fibers as revealed by 31P chemical shielding anisotropy. Shindo H Adv Biophys; 1985; 20():39-57. PubMed ID: 2422884 [TBL] [Abstract][Full Text] [Related]
5. Raman spectra of single crystals of r(GCG)d(CGC) and d(CCCCGGGG) as models for A DNA, their structure transitions in aqueous solution, and comparison with double-helical poly(dG).poly(dC). Benevides JM; Wang AH; Rich A; Kyogoku Y; van der Marel GA; van Boom JH; Thomas GJ Biochemistry; 1986 Jan; 25(1):41-50. PubMed ID: 3954991 [TBL] [Abstract][Full Text] [Related]
6. Direct evidence for a bimorphic structure of a DNA-RNA hybrid, poly(rA).poly(dT), at high relative humidity. Shindo H; Matsumoto U J Biol Chem; 1984 Jul; 259(14):8682-4. PubMed ID: 6746619 [TBL] [Abstract][Full Text] [Related]
7. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy. Shindo H; Wooten JB; Pheiffer BH; Zimmerman SB Biochemistry; 1980 Feb; 19(3):518-26. PubMed ID: 7356944 [TBL] [Abstract][Full Text] [Related]
8. Conformational variability of poly(dA-dT).poly(dA-dT) and some other deoxyribonucleic acids includes a novel type of double helix. Vorlícková M; Kypr J J Biomol Struct Dyn; 1985 Aug; 3(1):67-83. PubMed ID: 3917211 [TBL] [Abstract][Full Text] [Related]
9. Structural studies of A-form sodium deoxyribonucleic acid: phosphorus-31 nuclear magnetic resonance of oriented fibers. Nall BT; Rothwell WP; Waugh JS; Rupprecht A Biochemistry; 1981 Mar; 20(7):1881-7. PubMed ID: 7225363 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an oligodeoxyribonucleotide duplex refined via a hybrid relaxation matrix procedure. Powers R; Jones CR; Gorenstein DG J Biomol Struct Dyn; 1990 Oct; 8(2):253-94. PubMed ID: 2268403 [TBL] [Abstract][Full Text] [Related]
11. The structure of poly(dA):poly(dT) in a condensed state and in solution. Lipanov AA; Chuprina VP Nucleic Acids Res; 1987 Jul; 15(14):5833-44. PubMed ID: 3615203 [TBL] [Abstract][Full Text] [Related]
13. Structural effects of the C2-methylhypoxanthine:cytosine base pair in B-DNA: A combined NMR and X-ray diffraction study of d(CGC[m2I]AATTCGCG). Yang D; Gao Y; Robinson H; van der Marel GA; van Boom JH; Wang AH Biochemistry; 1993 Aug; 32(33):8672-81. PubMed ID: 8357809 [TBL] [Abstract][Full Text] [Related]
14. Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids. Gorenstein DG; Schroeder SA; Fu JM; Metz JT; Roongta V; Jones CR Biochemistry; 1988 Sep; 27(19):7223-37. PubMed ID: 3207672 [TBL] [Abstract][Full Text] [Related]
15. A RNA.DNA hybrid that can adopt two conformations: an x-ray diffraction study of poly(rA).poly(dT) in concentrated solution or in fibers. Zimmerman SB; Pheiffer BH Proc Natl Acad Sci U S A; 1981 Jan; 78(1):78-82. PubMed ID: 6941264 [TBL] [Abstract][Full Text] [Related]
16. 23Na NMR relaxation study of the effects of conformation and base composition on the interactions of counterions with double-helical DNA. Nordenskiöld L; Chang DK; Anderson CF; Record MT Biochemistry; 1984 Sep; 23(19):4309-17. PubMed ID: 6091746 [TBL] [Abstract][Full Text] [Related]
17. Local and overall conformations of DNA double helices with the A - T base pairs. Katahira M; Nishimura Y; Tsuboi M; Sato T; Mitsui Y; Iitaka Y Biochim Biophys Acta; 1986 Aug; 867(4):256-67. PubMed ID: 3741875 [TBL] [Abstract][Full Text] [Related]
18. Characterization of alternating deoxyribonucleic acid conformations in solution by phosphorus-31 nuclear magnetic resonance spectroscopy. Cohen JS; Wooten JB; Chatterjee CL Biochemistry; 1981 May; 20(11):3049-55. PubMed ID: 7248266 [TBL] [Abstract][Full Text] [Related]
19. An alternating conformation characterizes the phosphodiester backbone of poly(dA-dT) in solution. Shindo H; Simpson RT; Cohen JS J Biol Chem; 1979 Sep; 254(17):8125-8. PubMed ID: 468810 [TBL] [Abstract][Full Text] [Related]
20. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles. Gorenstein DG; Luxon BA; Goldfield EM; Lai K; Vegeais D Biochemistry; 1982 Feb; 21(3):580-9. PubMed ID: 6175342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]