BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3994997)

  • 1. Phosphorus-31 nuclear magnetic resonance of highly oriented DNA fibers. 1. Static geometry of DNA double helices.
    Shindo H; Fujiwara T; Akutsu H; Matsumoto U; Kyogoku Y
    Biochemistry; 1985 Feb; 24(4):887-95. PubMed ID: 3994997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry of the phosphodiester backbone in the A form of deoxyribonucleic acid determined by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Shindo H; Wooten JB; Zimmerman SB
    Biochemistry; 1981 Feb; 20(4):745-50. PubMed ID: 7213610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus-31 nuclear magnetic resonance of highly oriented DNA fibers. 2. Molecular motions in hydrated DNA.
    Fujiwara T; Shindo H
    Biochemistry; 1985 Feb; 24(4):896-902. PubMed ID: 3994998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Backbone geometry of oriented DNA fibers as revealed by 31P chemical shielding anisotropy.
    Shindo H
    Adv Biophys; 1985; 20():39-57. PubMed ID: 2422884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectra of single crystals of r(GCG)d(CGC) and d(CCCCGGGG) as models for A DNA, their structure transitions in aqueous solution, and comparison with double-helical poly(dG).poly(dC).
    Benevides JM; Wang AH; Rich A; Kyogoku Y; van der Marel GA; van Boom JH; Thomas GJ
    Biochemistry; 1986 Jan; 25(1):41-50. PubMed ID: 3954991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for a bimorphic structure of a DNA-RNA hybrid, poly(rA).poly(dT), at high relative humidity.
    Shindo H; Matsumoto U
    J Biol Chem; 1984 Jul; 259(14):8682-4. PubMed ID: 6746619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy.
    Shindo H; Wooten JB; Pheiffer BH; Zimmerman SB
    Biochemistry; 1980 Feb; 19(3):518-26. PubMed ID: 7356944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational variability of poly(dA-dT).poly(dA-dT) and some other deoxyribonucleic acids includes a novel type of double helix.
    Vorlícková M; Kypr J
    J Biomol Struct Dyn; 1985 Aug; 3(1):67-83. PubMed ID: 3917211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of A-form sodium deoxyribonucleic acid: phosphorus-31 nuclear magnetic resonance of oriented fibers.
    Nall BT; Rothwell WP; Waugh JS; Rupprecht A
    Biochemistry; 1981 Mar; 20(7):1881-7. PubMed ID: 7225363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an oligodeoxyribonucleotide duplex refined via a hybrid relaxation matrix procedure.
    Powers R; Jones CR; Gorenstein DG
    J Biomol Struct Dyn; 1990 Oct; 8(2):253-94. PubMed ID: 2268403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of poly(dA):poly(dT) in a condensed state and in solution.
    Lipanov AA; Chuprina VP
    Nucleic Acids Res; 1987 Jul; 15(14):5833-44. PubMed ID: 3615203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple helical polynucleotidic structures: sugar conformations determined by FTIR spectroscopy.
    Liquier J; Coffinier P; Firon M; Taillandier E
    J Biomol Struct Dyn; 1991 Dec; 9(3):437-45. PubMed ID: 1815637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural effects of the C2-methylhypoxanthine:cytosine base pair in B-DNA: A combined NMR and X-ray diffraction study of d(CGC[m2I]AATTCGCG).
    Yang D; Gao Y; Robinson H; van der Marel GA; van Boom JH; Wang AH
    Biochemistry; 1993 Aug; 32(33):8672-81. PubMed ID: 8357809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids.
    Gorenstein DG; Schroeder SA; Fu JM; Metz JT; Roongta V; Jones CR
    Biochemistry; 1988 Sep; 27(19):7223-37. PubMed ID: 3207672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A RNA.DNA hybrid that can adopt two conformations: an x-ray diffraction study of poly(rA).poly(dT) in concentrated solution or in fibers.
    Zimmerman SB; Pheiffer BH
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):78-82. PubMed ID: 6941264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 23Na NMR relaxation study of the effects of conformation and base composition on the interactions of counterions with double-helical DNA.
    Nordenskiöld L; Chang DK; Anderson CF; Record MT
    Biochemistry; 1984 Sep; 23(19):4309-17. PubMed ID: 6091746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local and overall conformations of DNA double helices with the A - T base pairs.
    Katahira M; Nishimura Y; Tsuboi M; Sato T; Mitsui Y; Iitaka Y
    Biochim Biophys Acta; 1986 Aug; 867(4):256-67. PubMed ID: 3741875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of alternating deoxyribonucleic acid conformations in solution by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Cohen JS; Wooten JB; Chatterjee CL
    Biochemistry; 1981 May; 20(11):3049-55. PubMed ID: 7248266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternating conformation characterizes the phosphodiester backbone of poly(dA-dT) in solution.
    Shindo H; Simpson RT; Cohen JS
    J Biol Chem; 1979 Sep; 254(17):8125-8. PubMed ID: 468810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles.
    Gorenstein DG; Luxon BA; Goldfield EM; Lai K; Vegeais D
    Biochemistry; 1982 Feb; 21(3):580-9. PubMed ID: 6175342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.