BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3996397)

  • 1. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and pyruvate-kinase-deficient red blood cells.
    Holzhütter HG; Jacobasch G; Bisdorff A
    Eur J Biochem; 1985 May; 149(1):101-11. PubMed ID: 3996397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energy metabolism of pyruvate kinase deficient red blood cells.
    Jacobasch G; Holzhütter H; Bisdorf A
    Biomed Biochim Acta; 1983; 42(11-12):S268-72. PubMed ID: 6675701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemolytic anemias due to erythrocyte enzyme deficiencies.
    Jacobasch G; Rapoport SM
    Mol Aspects Med; 1996 Apr; 17(2):143-70. PubMed ID: 8813716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocyte pyruvate kinase- and glucose phosphate isomerase deficiency: perturbation of glycolysis by structural defects and functional alterations of defective enzymes and its relation to the clinical severity of chronic hemolytic anemia.
    Lakomek M; Winkler H
    Biophys Chem; 1997 Jun; 66(2-3):269-84. PubMed ID: 9362562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical analysis of multienzyme systems. I. Modelling of the glycolysis of human erythrocytes.
    Rapoport TA; Heinrich R
    Biosystems; 1975 Jul; 7(1):120-9. PubMed ID: 168932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes.
    Rapoport TA; Heinrich R; Rapoport SM
    Biochem J; 1976 Feb; 154(2):449-69. PubMed ID: 132930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The metabolic effects of oxalate on intact red blood cells.
    Buc HA; Demaugre F; Cépanec C; Leroux JP
    Biochim Biophys Acta; 1980 Mar; 628(2):136-44. PubMed ID: 7357032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and cellular regulation of pyruvate kinase in red blood cells.
    Jacobasch G; Holzhütter H
    Haematologia (Budap); 1984; 17(2):259-66. PubMed ID: 6534831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modelling study of feedforward activation in human erythrocyte glycolysis.
    Bali M; Thomas SR
    C R Acad Sci III; 2001 Mar; 324(3):185-99. PubMed ID: 11291305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modelling of metabolic pathways affected by an enzyme deficiency.
    Holzhütter HG; Schuster R; Buckwitz D; Jacobasch G
    Biomed Biochim Acta; 1990; 49(8-9):791-800. PubMed ID: 2082922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Control of glycolysis in magnesium deficiency: studies on intact red cells and hemolysates].
    Jacobasch G; Gerth C; Fabricius PG
    Acta Biol Med Ger; 1977; 36(3-4):587-96. PubMed ID: 145777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. Energy and redox metabolism of glucose-6-phosphate-dehydrogenase-deficient erythrocytes.
    Schuster R; Jacobasch G; Holzhütter HG
    Eur J Biochem; 1989 Jul; 182(3):605-12. PubMed ID: 2666131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte pyruvate kinase deficiency. The influence of physiologically important metabolites on the function of normal and defective enzymes.
    Lakomek M; Winkler H; Pekrun A; Krüger N; Sander M; Huppke P; Schröter W
    Enzyme Protein; 1994-1995; 48(3):149-63. PubMed ID: 8589802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors].
    Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM
    Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular free magnesium and phosphorylated metabolites in hexokinase- and pyruvate kinase-deficient red cells measured using 31P-NMR spectroscopy.
    Ouwerkerk R; van Echteld CJ; Staal GE; Rijksen G
    Biochim Biophys Acta; 1989 Mar; 1010(3):294-303. PubMed ID: 2920177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic manipulation of key glycolytic enzymes: a novel proposal for the maintenance of red cell 2,3-DPG and ATP levels during storage.
    Vora S
    Biomed Biochim Acta; 1987; 46(2-3):S285-9. PubMed ID: 3593307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia.
    Martinov MV; Plotnikov AG; Vitvitsky VM; Ataullakhanov FI
    Biochim Biophys Acta; 2000 Mar; 1474(1):75-87. PubMed ID: 10699493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of red cell aging in the diagnosis of glycolytic enzyme defects.
    Staal GE; Rijksen G
    Adv Exp Med Biol; 1991; 307():239-49. PubMed ID: 1805589
    [No Abstract]   [Full Text] [Related]  

  • 19. Impaired nicotinamide adenine dinucleotide synthesis in pyruvate kinase-deficient human erythrocytes: a mechanism for decreased total NAD content and a possible secondary cause of hemolysis.
    Zerez CR; Tanaka KR
    Blood; 1987 Apr; 69(4):999-1005. PubMed ID: 3828536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new variant of erythrocyte pyruvate kinase - PK "maebashi".
    Kubota K; Moteki M; Omine M; Tsuchya J; Maekawa T; Miwa S
    Scand J Haematol; 1975 May; 14(4):242-8. PubMed ID: 1153954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.