BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 3996784)

  • 1. Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram.
    Gorga MP; Worthington DW; Reiland JK; Beauchaine KA; Goldgar DE
    Ear Hear; 1985; 6(2):105-12. PubMed ID: 3996784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds.
    Gorga MP; Johnson TA; Kaminski JR; Beauchaine KL; Garner CA; Neely ST
    Ear Hear; 2006 Feb; 27(1):60-74. PubMed ID: 16446565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distortion product otoacoustic emission and auditory brain stem response measures of pediatric sensorineural hearing loss with islands of normal sensitivity.
    Balfour PB; Pillion JP; Gaskin AE
    Ear Hear; 1998 Dec; 19(6):463-72. PubMed ID: 9867294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term audiometric follow-up of click-evoked auditory brainstem response in hearing-impaired infants.
    Schoonhoven R; Lamoré PJ; de Laat JA; Grote JJ
    Audiology; 2000; 39(3):135-45. PubMed ID: 10905399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-specific aspects of the auditory brainstem response threshold elicited by 1000-Hz filtered clicks in subjects with sloping cochlear hearing losses.
    Conijn EA; Brocaar MP; van Zanten GA
    Audiology; 1993; 32(1):1-11. PubMed ID: 8447757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of auditory steady-state responses and auditory brainstem responses in audiometric assessment of adults with sensorineural hearing loss.
    Lin YH; Ho HC; Wu HP
    Auris Nasus Larynx; 2009 Apr; 36(2):140-5. PubMed ID: 18620826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds.
    Vander Werff KR; Prieve BA; Georgantas LM
    Ear Hear; 2009 Jun; 30(3):350-68. PubMed ID: 19322084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of audiometric configuration on threshold and suprathreshold auditory steady-state responses.
    Vander Werff KR; Brown CJ
    Ear Hear; 2005 Jun; 26(3):310-26. PubMed ID: 15937412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Click- and tone-burst-evoked otoacoustic emissions in normally hearing ears and in ears with high-frequency sensorineural hearing loss.
    Hauser R; Probst R; Löhle E
    Eur Arch Otorhinolaryngol; 1991; 248(6):345-52. PubMed ID: 1930984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology.
    Prendergast G; Guest H; Munro KJ; Kluk K; Léger A; Hall DA; Heinz MG; Plack CJ
    Hear Res; 2017 Feb; 344():68-81. PubMed ID: 27816499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of auditory brain stem responses elicited by click and chirp stimuli in adults with normal hearing and sensory hearing loss.
    Maloff ES; Hood LJ
    Ear Hear; 2014; 35(2):271-82. PubMed ID: 24441741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent click-evoked auditory brain stem response.
    Rance G; Dowell RC; Rickards FW; Beer DE; Clark GM
    Ear Hear; 1998 Feb; 19(1):48-61. PubMed ID: 9504272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ABR thresholds to tonebursts gated with Blackman and linear windows in adults with high-frequency sensorineural hearing loss.
    Purdy SC; Abbas PJ
    Ear Hear; 2002 Aug; 23(4):358-68. PubMed ID: 12195178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency specificity of the auditory brainstem response threshold elicited by clicks masked with 1590-Hz high-pass noise in subjects with sloping cochlear hearing losses.
    Conijn EA; Brocaar MP; van Zanten GA
    Audiology; 1992; 31(5):272-83. PubMed ID: 1449430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of sensory hearing loss on cochlear filter times estimated from auditory brainstem response latencies.
    Don M; Ponton CW; Eggermont JJ; Kwong B
    J Acoust Soc Am; 1998 Oct; 104(4):2280-9. PubMed ID: 10491692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear processes affecting wave V latency of the auditory evoked brain stem response. A study of patients with sensory hearing loss.
    Yamada O; Kodera K; Yagi T
    Scand Audiol; 1979; 8(2):67-70. PubMed ID: 515691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Click and Swept-Tone Auditory Brainstem Response Results for Moderate and Severe Sensorineural Hearing Loss.
    Tan J; Luo J; Wang X; Jiang Y; Zeng X; Chen S; Li P
    Audiol Neurootol; 2020; 25(6):336-344. PubMed ID: 32906132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cochlear hearing loss on auditory brain stem response latency.
    Kirsh I; Thornton A; Burkard R; Halpin C
    Ear Hear; 1992 Aug; 13(4):233-5. PubMed ID: 1397765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Usefulness of 1000 Hz tone-burst-evoked responses in the diagnosis of acoustic neuroma.
    Telian SA; Kileny PR
    Otolaryngol Head Neck Surg; 1989 Oct; 101(4):466-71. PubMed ID: 2508024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of audiometric configuration on the auditory brain stem response.
    Keith WJ; Greville KA
    Ear Hear; 1987 Feb; 8(1):49-55. PubMed ID: 3556811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.