These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3997416)

  • 1. Induction of DNA synthesis by co-culture of retinal glia and pigment epithelium.
    Burke JM; Foster SJ
    Invest Ophthalmol Vis Sci; 1985 May; 26(5):636-42. PubMed ID: 3997416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of growth in retina-derived cells by extracellular matrices.
    Williams DF; Burke JM
    Invest Ophthalmol Vis Sci; 1990 Sep; 31(9):1717-23. PubMed ID: 2211020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis of proliferative vitreoretinopathy. Modulation of retinal pigment epithelial cell functions by vitreous and macrophages.
    Kirchhof B; Sorgente N
    Dev Ophthalmol; 1989; 16():1-53. PubMed ID: 2676632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective and efficient culturing of retinal pigment epithelial cells using a feeder layer.
    Kobayashi C; Kagami H; Kito K; Ishikawa K; Ebisawa K; Ueda M; Terasaki H
    Cytotherapy; 2005; 7(5):427-37. PubMed ID: 16236632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural and immunocytochemical changes in retinal pigment epithelium, retinal glia, and fibroblasts in vitreous culture.
    Vinores SA; Campochiaro PA; McGehee R; Orman W; Hackett SF; Hjelmeland LM
    Invest Ophthalmol Vis Sci; 1990 Dec; 31(12):2529-45. PubMed ID: 1702409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct comparison of the migration of three cell types involved in epiretinal membrane formation.
    Hogg PA; Grierson I; Hiscott P
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2749-57. PubMed ID: 12147612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferative vitreo-retinal disorders: experimental models in vivo and in vitro.
    Martini B
    Acta Ophthalmol Suppl (1985); 1992; (201):1-63. PubMed ID: 1322004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth factor combinations modulate human retinal pigment epithelial cell proliferation.
    Kaven CW; Spraul CW; Zavazava NK; Lang GK; Lang GE
    Curr Eye Res; 2000 Jun; 20(6):480-7. PubMed ID: 10980660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatocyte growth factor receptor in human RPE cells: implications in proliferative vitreoretinopathy.
    Lashkari K; Rahimi N; Kazlauskas A
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):149-56. PubMed ID: 9888438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultures of human retinal pigment epithelium. Modulation of extracellular matrix.
    Martini B; Pandey R; Ogden TE; Ryan SJ
    Invest Ophthalmol Vis Sci; 1992 Mar; 33(3):516-21. PubMed ID: 1544780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells.
    Casaroli-Marano RP; Pagan R; VilarĂ³ S
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2062-72. PubMed ID: 10440262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic, not acidic fibroblast growth factor stimulates proliferation of cultured human retinal pigment epithelial cells.
    Schwegler JS; Knorz MC; Akkoyun I; Liesenhoff H
    Mol Vis; 1997 Oct; 3():10. PubMed ID: 9383333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal pigment epithelium of the rat express CD81, the target of the anti-proliferative antibody (TAPA).
    Geisert EE; Abel HJ; Fan L; Geisert GR
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):274-80. PubMed ID: 11773042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cis-Hydroxyproline inhibits proliferation, collagen synthesis, attachment, and migration of cultured bovine retinal pigment epithelial cells.
    Yoo JS; Sakamoto T; Spee C; Kimura H; Harris MS; Hinton DR; Kay EP; Ryan SJ
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):520-8. PubMed ID: 9040485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel organotypic culture model of adult mammalian neurosensory retina in co-culture with retinal pigment epithelium.
    Kaempf S; Walter P; Salz AK; Thumann G
    J Neurosci Methods; 2008 Aug; 173(1):47-58. PubMed ID: 18632159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor beta2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor.
    Gamulescu MA; Chen Y; He S; Spee C; Jin M; Ryan SJ; Hinton DR
    Exp Eye Res; 2006 Jul; 83(1):212-22. PubMed ID: 16563380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of cultured human retinal pigment epithelium to hypoxia: a comparison to other cell types.
    Nash RW; McKay BS; Burke JM
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2850-6. PubMed ID: 8188480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of insulin and glucose levels on retinal glial cell activation and pigment epithelium-derived fibroblast growth factor-2.
    Layton CJ; Becker S; Osborne NN
    Mol Vis; 2006 Jan; 12():43-54. PubMed ID: 16446701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoptosis in proliferative vitreoretinal disorders: possible involvement of TGF-beta-induced RPE cell apoptosis.
    Esser P; Heimann K; Bartz-schmidt KU; Fontana A; Schraermeyer U; Thumann G; Weller M
    Exp Eye Res; 1997 Sep; 65(3):365-78. PubMed ID: 9299173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid promotes density-dependent growth arrest in human retinal pigment epithelial cells.
    Campochiaro PA; Hackett SF; Conway BP
    Invest Ophthalmol Vis Sci; 1991 Jan; 32(1):65-72. PubMed ID: 1846132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.