These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3997529)

  • 21. A new model for laser-induced thermal damage in the retina.
    Till SJ; Till J; Milsom PK; Rowlands G
    Bull Math Biol; 2003 Jul; 65(4):731-46. PubMed ID: 12875340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melanin granule models for the processes of laser-induced thermal damage in pigmented retinal tissues. I. Modeling of laser-induced heating of melanosomes and selective thermal processes in retinal tissues.
    Pustovalov VK; Jean B
    Bull Math Biol; 2007 Jan; 69(1):245-63. PubMed ID: 16850352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinal damage threshold of ophthalmic Q-switched Nd-YAG laser in monkey eyes.
    Yumita A; Shirato S; Kitazawa Y
    Jpn J Ophthalmol; 1986; 30(1):100-15. PubMed ID: 3755188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinal injury thresholds for blue wavelength lasers.
    Lund DJ; Stuck BE; Edsall P
    Health Phys; 2006 May; 90(5):477-84. PubMed ID: 16607179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histopathology of ruby and argon laser lesions in monkey and human retina. A comparative study.
    Marshall J; Hamilton AM; Bird AC
    Br J Ophthalmol; 1975 Nov; 59(11):610-30. PubMed ID: 812546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the ultrastructure of the iris after irradiation with intense light. A study of long-term effects after irradiation with argon ion, Nd:YAG and Q-switched ruby lasers.
    van der Zypen E; Fankhauser F; Bebie H; Marshall J
    Adv Ophthalmol; 1979; 39():59-180. PubMed ID: 119433
    [No Abstract]   [Full Text] [Related]  

  • 27. Measured and predicted laser-induced temperature rises in the rabbit fundus.
    Cain CP; Welch AJ
    Invest Ophthalmol; 1974 Jan; 13(1):60-70. PubMed ID: 4809511
    [No Abstract]   [Full Text] [Related]  

  • 28. Theoretical analysis of thermal damage in biological tissues caused by laser irradiation.
    Zhou J; Chen JK; Zhang Y
    Mol Cell Biomech; 2007 Mar; 4(1):27-39. PubMed ID: 17879769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Possible damage to the eye caused by light from ophthalmologic equipment].
    Stiller H; Rassow B
    Klin Monbl Augenheilkd; 1991 Jun; 199(1):62-6. PubMed ID: 1895743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Additivity and repair of actinic retinal lesions.
    Griess GA; Blankenstein MF
    Invest Ophthalmol Vis Sci; 1981 Jun; 20(6):803-7. PubMed ID: 7195384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subvisible retinal laser therapy: titration algorithm and tissue response.
    Lavinsky D; Sramek C; Wang J; Huie P; Dalal R; Mandel Y; Palanker D
    Retina; 2014 Jan; 34(1):87-97. PubMed ID: 23873164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrashort laser pulse bioeffects and safety.
    Rockwell BA; Hammer DX; Hopkins RA; Payne DJ; Toth CA; Roach WP; Druessel JJ; Kennedy PK; Amnotte RE; Eilert B; Phillips S; Noojin GD; Stolarski DJ; Cain C
    J Laser Appl; 1999 Feb; 11(1):42-4. PubMed ID: 10346063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas.
    Cain CP; Thomas RJ; Noojin GD; Stolarski DJ; Kennedy PK; Buffington GD; Rockwell BA
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):101-12. PubMed ID: 15241612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement and prediction of thermal injury in the retina of the rhesus monkey.
    Welch AJ; Polhamus GD
    IEEE Trans Biomed Eng; 1984 Oct; 31(10):633-43. PubMed ID: 6490023
    [No Abstract]   [Full Text] [Related]  

  • 35. Histopathology of retinal lesions produced by long-term laser exposure.
    Gibbons WD; Schmidt RE; Allen RG
    Aviat Space Environ Med; 1977 Aug; 48(8):708-11. PubMed ID: 407896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of ocular aberrations on retinal laser damage thresholds in the human eye.
    Milsom PK; Till SJ; Rowlands G
    Health Phys; 2006 Jul; 91(1):20-8. PubMed ID: 16775476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm.
    Vincelette RL; Rockwell BA; Oliver JW; Kumru SS; Thomas RJ; Schuster KJ; Noojin GD; Shingledecker AD; Stolarski DJ; Welch AJ
    Lasers Surg Med; 2009 Jul; 41(5):382-90. PubMed ID: 19533764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suprathreshold retinal damage due to single 6 picosecond 1060 nm laser light pulses.
    Schmidt RE; Taboada J; Butcher WI
    Aviat Space Environ Med; 1979 Aug; 50(8):788-91. PubMed ID: 115454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen.
    Schuele G; Rumohr M; Huettmann G; Brinkmann R
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):714-9. PubMed ID: 15671304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinal damage from long-term exposure to laser radiation.
    Gibbons WD; Allen RG
    Invest Ophthalmol Vis Sci; 1977 Jun; 16(6):521-9. PubMed ID: 405344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.