These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3997904)

  • 1. The effect of Haversian remodeling on the tensile properties of human cortical bone.
    Vincentelli R; Grigorov M
    J Biomech; 1985; 18(3):201-7. PubMed ID: 3997904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between elastic properties and microstructure of bovine cortical bone.
    Lipson SF; Katz JL
    J Biomech; 1984; 17(4):231-40. PubMed ID: 6736060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of remodeling on the elastic properties of bone.
    Katz JL; Yoon HS; Lipson S; Maharidge R; Meunier A; Christel P
    Calcif Tissue Int; 1984; 36 Suppl 1():S31-6. PubMed ID: 6430520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An elastic compound tube model for a single osteon.
    Braidotti P; Branca FP; Sciubba E; Stagni L
    J Biomech; 1995 Apr; 28(4):439-44. PubMed ID: 7738052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanics modeling of Haversian cortical bone properties.
    Hogan HA
    J Biomech; 1992 May; 25(5):549-56. PubMed ID: 1592860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanical oscillators and techniques for determining the dynamic moduli of microsamples of human cortical bone at microstrains.
    Frasca P; Harper RA; Katz JL
    J Biomech Eng; 1981 Aug; 103(3):146-50. PubMed ID: 7278191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile and compressive properties of cancellous bone.
    Røhl L; Larsen E; Linde F; Odgaard A; Jørgensen J
    J Biomech; 1991; 24(12):1143-9. PubMed ID: 1769979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite.
    Currey JD; Brear K; Zioupos P
    J Biomech; 1994 Jul; 27(7):885-97. PubMed ID: 8063839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes with aging in cortical bone of the human tibia.
    Nyssen-Behets C; Duchesne PY; Dhem A
    Gerontology; 1997; 43(6):316-25. PubMed ID: 9386983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the torsional properties of single osteons.
    Lakes R
    J Biomech; 1995 Nov; 28(11):1409-10. PubMed ID: 8522553
    [No Abstract]   [Full Text] [Related]  

  • 11. Simple constitutive model for a cortical bone.
    Krajcinovic D; Trafimow J; Sumarac D
    J Biomech; 1987; 20(8):779-84. PubMed ID: 3654677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Tensile mechanical characteristics of decalcified cortical bone matrix].
    Luo G; Zhang Y; Jiang Y; Huang F; Qin T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):501-5. PubMed ID: 22568337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA; Wilson LJ; Langton C; Epari D
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relationship between the microstructure of bone and its mechanical stiffness.
    Wagner HD; Weiner S
    J Biomech; 1992 Nov; 25(11):1311-20. PubMed ID: 1400532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone remodeling and piezoelectricity. I.
    Gjelsvik A
    J Biomech; 1973 Jan; 6(1):69-77. PubMed ID: 4693869
    [No Abstract]   [Full Text] [Related]  

  • 16. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties.
    Martin RB; Boardman DL
    J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts.
    Blevins FT; Hecker AT; Bigler GT; Boland AL; Hayes WC
    Am J Sports Med; 1994; 22(3):328-33. PubMed ID: 8037272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens.
    Hvid I; Bentzen SM; Linde F; Mosekilde L; Pongsoipetch B
    J Biomech; 1989; 22(8-9):837-44. PubMed ID: 2613719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content.
    Currey JD
    J Biomech; 2004 Apr; 37(4):549-56. PubMed ID: 14996567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.