BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 3998150)

  • 1. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease.
    Brugnara C; Kopin AS; Bunn HF; Tosteson DC
    J Clin Invest; 1985 May; 75(5):1608-17. PubMed ID: 3998150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the volume- and chloride-dependent K transport in human erythrocytes homozygous for hemoglobin C.
    Brugnara C
    J Membr Biol; 1989 Oct; 111(1):69-81. PubMed ID: 2810352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell volume regulation in hemoglobin CC and AA erythrocytes.
    Berkowitz LR; Orringer EP
    Am J Physiol; 1987 Mar; 252(3 Pt 1):C300-6. PubMed ID: 3826359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell volume, K transport, and cell density in human erythrocytes.
    Brugnara C; Tosteson DC
    Am J Physiol; 1987 Mar; 252(3 Pt 1):C269-76. PubMed ID: 3826356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+ for H+ exchange in rabbit erythrocytes.
    Escobales N; Rivera A
    J Cell Physiol; 1987 Jul; 132(1):73-80. PubMed ID: 3036894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrolyte composition and equilibrium in hemoglobin CC red blood cells.
    Brugnara C; Kopin AS; Bunn HF; Tosteson DC
    Trans Assoc Am Physicians; 1984; 97():104-12. PubMed ID: 6535334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume-dependent and NEM-stimulated K+,Cl- transport is elevated in oxygenated SS, SC and CC human red cells.
    Canessa M; Spalvins A; Nagel RL
    FEBS Lett; 1986 May; 200(1):197-202. PubMed ID: 3699160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.
    Kummerow D; Hamann J; Browning JA; Wilkins R; Ellory JC; Bernhardt I
    J Membr Biol; 2000 Aug; 176(3):207-16. PubMed ID: 10931972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S; Hoffman JF
    J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS.
    Canessa M; Fabry ME; Blumenfeld N; Nagel RL
    J Membr Biol; 1987; 97(2):97-105. PubMed ID: 3446820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP; Nazaret C; Hannaert PA; Cragoe EJ
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume-sensitive K transport in human erythrocytes.
    Kaji D
    J Gen Physiol; 1986 Dec; 88(6):719-38. PubMed ID: 3794638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red cell ouabain-resistant Na+ and K+ transport in Wistar, brown Norway and spontaneously hypertensive rats.
    Bin Talib HK; Zicha J
    Physiol Res; 1993; 42(3):181-8. PubMed ID: 8218151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of human red cell sodium and potassium transport by divalent cations.
    Ellory JC; Flatman PW; Stewart GW
    J Physiol; 1983 Jul; 340():1-17. PubMed ID: 6887042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and stoichiometry of the human red cell Na+/H+ exchanger.
    Semplicini A; Spalvins A; Canessa M
    J Membr Biol; 1989 Mar; 107(3):219-28. PubMed ID: 2541250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation transport in mouse erythrocytes: role of K(+)-Cl- cotransport in regulatory volume decrease.
    Armsby CC; Brugnara C; Alper SL
    Am J Physiol; 1995 Apr; 268(4 Pt 1):C894-902. PubMed ID: 7733237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of pH and membrane potential on passive Na+ and K+ fluxes in human red blood cells.
    Chipperfield AR; Shennan DB
    Biochim Biophys Acta; 1986 May; 886(3):373-82. PubMed ID: 3011118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes.
    Rivera A; De Franceschi L; Peters LL; Gascard P; Mohandas N; Brugnara C
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C880-6. PubMed ID: 16774987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.