BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3998295)

  • 1. Effect of coiling in a cochlear model.
    Steele CR; Zais JG
    J Acoust Soc Am; 1985 May; 77(5):1849-52. PubMed ID: 3998295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of coiling on the micromechanics of the mammalian cochlea.
    Cai H; Manoussaki D; Chadwick R
    J R Soc Interface; 2005 Sep; 2(4):341-8. PubMed ID: 16849192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple scale analysis of the spirally coiled cochlea.
    Loh CH
    J Acoust Soc Am; 1983 Jul; 74(1):94-103. PubMed ID: 6886202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear model including three-dimensional fluid and four modes of partition flexibility.
    Taber LA; Steele CR
    J Acoust Soc Am; 1981 Aug; 70(2):426-36. PubMed ID: 7288028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional model calculations for guinea pig cochlea.
    Steele CR; Taber LA
    J Acoust Soc Am; 1981 Apr; 69(4):1107-11. PubMed ID: 7229198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of opening and draining the cochlea.
    Steele CR; Zais JG
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):84-9. PubMed ID: 4019911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of bone-conducted hearing: mathematical approach.
    Chan WX; Yoon YJ; Kim N
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1731-1740. PubMed ID: 30051339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear mechanics with fluid viscosity and compressibility.
    Deepu P
    Phys Rev E; 2019 Mar; 99(3-1):032417. PubMed ID: 30999444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active control of waves in a cochlear model with subpartitions.
    Chadwick RS; Dimitriadis EK; Iwasa KH
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2564-9. PubMed ID: 8637914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism.
    Steele CR; Lim KM
    Audiol Neurootol; 1999; 4(3-4):197-203. PubMed ID: 10187930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward three-dimensional analysis of cochlear structure.
    Steele CR
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):238-51. PubMed ID: 10529645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of WKB calculations and experimental results for three-dimensional cochlear models.
    Steele CR; Taber LA
    J Acoust Soc Am; 1979 Apr; 65(4):1007-18. PubMed ID: 447914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracochlear pressure and derived quantities from a three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    J Acoust Soc Am; 2007 Aug; 122(2):952-66. PubMed ID: 17672644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.
    Chan WX; Yoon YJ
    Hear Res; 2015 Sep; 327():136-42. PubMed ID: 26070425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane.
    Allen JB; Fahey PF
    J Acoust Soc Am; 1992 Jul; 92(1):178-88. PubMed ID: 1512322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for computing motion in a two-dimensional cochlear model.
    Sondhi MM
    J Acoust Soc Am; 1978 May; 63(5):1468-77. PubMed ID: 690328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Relationship of distortion product in cochlea with cochlear activity revealed by laser interferometry].
    Long X; Zhang Y; Lu J; Long C
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Sep; 29(18):1644-7. PubMed ID: 26790268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.