These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 3998706)

  • 1. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions.
    Haas M; McManus TJ
    J Gen Physiol; 1985 May; 85(5):649-67. PubMed ID: 3998706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism.
    Kregenow FM
    J Gen Physiol; 1971 Oct; 58(4):396-412. PubMed ID: 5112658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):81-97. PubMed ID: 894252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport.
    Haas M; Schmidt WF; McManus TJ
    J Gen Physiol; 1982 Jul; 80(1):125-47. PubMed ID: 7119727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):59-79. PubMed ID: 894251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume-activated Cl(-)-independent and Cl(-)-dependent K+ pathways in trout red blood cells.
    Guizouarn H; Harvey BJ; Borgese F; Gabillat N; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():609-26. PubMed ID: 8392575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume-sensitive K transport in human erythrocytes.
    Kaji D
    J Gen Physiol; 1986 Dec; 88(6):719-38. PubMed ID: 3794638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes.
    Riddick DH; Kregenow FM; Orloff J
    J Gen Physiol; 1971 Jun; 57(6):752-66. PubMed ID: 4325171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. Volume regulation in isotonic media.
    Kregenow FM
    J Gen Physiol; 1973 Apr; 61(4):509-27. PubMed ID: 4694744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism.
    Kregenow FM
    J Gen Physiol; 1971 Oct; 58(4):372-95. PubMed ID: 5112657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Borgese F; Garcia-Romeu F; Motais R
    J Physiol; 1987 Jan; 382():123-44. PubMed ID: 3040965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of a Cl-dependent K flux by cAMP in pig red cells.
    Kim HD; Sergeant S; Forte LR; Sohn DH; Im JH
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C772-8. PubMed ID: 2539726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation.
    Jennings ML; al-Rohil N
    J Gen Physiol; 1990 Jun; 95(6):1021-40. PubMed ID: 2373997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of monovalent cation active transport by low concentrations of cardiac glycosides. Role of catecholamines.
    Hougen TJ; Spicer N; Smith TW
    J Clin Invest; 1981 Nov; 68(5):1207-14. PubMed ID: 7298847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume-dependent K+ transport in rabbit red blood cells comparison with oxygenated human SS cells.
    al-Rohil N; Jennings ML
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C114-21. PubMed ID: 2750884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume-regulating behavior of human platelets.
    Livne A; Grinstein S; Rothstein A
    J Cell Physiol; 1987 Jun; 131(3):354-63. PubMed ID: 2439517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):99-121. PubMed ID: 894253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry.
    Lytle C; McManus TJ; Haas M
    Am J Physiol; 1998 Feb; 274(2):C299-309. PubMed ID: 9486118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Several cation transporters and volume regulation in high-K dog red blood cells.
    Fujise H; Yamada I; Masuda M; Miyazawa Y; Ogawa E; Takahashi R
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C589-97. PubMed ID: 1848403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.