These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 3998808)

  • 1. Simple- and complex-cell response dependences on stimulation parameters.
    Spitzer H; Hochstein S
    J Neurophysiol; 1985 May; 53(5):1244-65. PubMed ID: 3998808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complex-cell receptive-field model.
    Spitzer H; Hochstein S
    J Neurophysiol; 1985 May; 53(5):1266-86. PubMed ID: 3998809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat.
    Pollen DA; Ronner SF
    J Physiol; 1975 Mar; 245(3):667-97. PubMed ID: 1142223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18.
    Orban GA; Hoffmann KP; Duysens J
    J Neurophysiol; 1985 Oct; 54(4):1026-49. PubMed ID: 4067619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and B-cells in cat striate cortex. Complementarity of responses to moving light and dark bars.
    Maske R; Yamane S; Bishop PO
    J Neurophysiol; 1985 Mar; 53(3):670-85. PubMed ID: 3981233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial frequency analysis in the visual system.
    Shapley R; Lennie P
    Annu Rev Neurosci; 1985; 8():547-83. PubMed ID: 3920946
    [No Abstract]   [Full Text] [Related]  

  • 7. Binocular interactions in the cat's dorsal lateral geniculate nucleus. I. Spatial-frequency analysis of responses of X, Y, and W cells to nondominant-eye stimulation.
    Guido W; Tumosa N; Spear PD
    J Neurophysiol; 1989 Aug; 62(2):526-43. PubMed ID: 2769345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.
    Ghose GM; Ohzawa I; Freeman RD
    J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinearity of spatial summation in simple cells of areas 17 and 18 of cat visual cortex.
    Ferster D; Jagadeesh B
    J Neurophysiol; 1991 Nov; 66(5):1667-79. PubMed ID: 1765800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase sensitivities, excitatory summation fields, and silent suppressive receptive fields of single neurons in the parastriate cortex of the cat.
    Romo PA; Wang C; Zeater N; Solomon SG; Dreher B
    J Neurophysiol; 2011 Oct; 106(4):1688-712. PubMed ID: 21715668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat.
    Saul AB; Humphrey AL
    J Neurophysiol; 1992 Oct; 68(4):1190-208. PubMed ID: 1432077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory discharge in the visual system: does it have a functional role?
    Ghose GM; Freeman RD
    J Neurophysiol; 1992 Nov; 68(5):1558-74. PubMed ID: 1479430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat.
    Ishikawa A; Shimegi S; Kida H; Sato H
    Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17.
    Mullikin WH; Jones JP; Palmer LA
    J Neurophysiol; 1984 Aug; 52(2):350-71. PubMed ID: 6481437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential behavior of simple and complex cells in visual cortex during a brief IOP elevation.
    Chen X; Liang Z; Shen W; Shou T
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2611-9. PubMed ID: 15980255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat.
    Bullier J; Norton TT
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):274-91. PubMed ID: 219159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Inhibition and space-frequency characteristics of the complex receptive fields of the cat visual cortex].
    Gauzel'man VE; Glezer VD; Shcherbach TA; Virsu V
    Fiziol Zh SSSR Im I M Sechenova; 1979 Feb; 65(2):238-48. PubMed ID: 456643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase sensitivity of complex cells in primary visual cortex.
    Hietanen MA; Cloherty SL; van Kleef JP; Wang C; Dreher B; Ibbotson MR
    Neuroscience; 2013 May; 237():19-28. PubMed ID: 23357120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual receptive fields of cat cortical neurons lack the distinctive geniculate Y cell signature.
    Spitzer H; Hochstein S
    Isr J Med Sci; 1987; 23(1-2):69-74. PubMed ID: 3570746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.