These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3998890)

  • 21. Bone formation and impedance of electrical current flow.
    Collins PC; Paterson DC; Vernon-Roberts B; Pfeiffer D
    Clin Orthop Relat Res; 1981; (155):196-210. PubMed ID: 7226614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats.
    Harnack D; Winter C; Meissner W; Reum T; Kupsch A; Morgenstern R
    J Neurosci Methods; 2004 Sep; 138(1-2):207-16. PubMed ID: 15325129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical stimulation of osteogenesis: studies of the cathode effect on rabbit femur.
    Petersson CJ; Holmer NG; Johnell O
    Acta Orthop Scand; 1982 Oct; 53(5):727-32. PubMed ID: 7136582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental performance of steel and platinum electrodes with chronic monophasic stimulation of the brain.
    Wetzel MC; Howell LG; Bearie KJ
    J Neurosurg; 1969 Dec; 31(6):658-69. PubMed ID: 5359212
    [No Abstract]   [Full Text] [Related]  

  • 25. [Electric stimulation in osteogenesis. Studies of the cathode].
    Moyen BJ; Lans DA; Thrasher EL; Harris WH
    Acta Orthop Belg; 1978; 44(5):664-70. PubMed ID: 753070
    [No Abstract]   [Full Text] [Related]  

  • 26. Electrical stimulation of the growth plate: a potential approach to an epiphysiodesis.
    Dodge GR; Bowen JR; Oh CW; Tokmakova K; Simon BJ; Aroojis A; Potter K
    Bioelectromagnetics; 2007 Sep; 28(6):463-70. PubMed ID: 17492657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Investigation of bone growth into porous metal implants (author's transl)].
    Pflüger G; Bösch P; Grundschober F; Kristen H; Plenk H; Schider S
    Wien Klin Wochenschr; 1979 Jul; 91(14):482-7. PubMed ID: 463048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct current electrical stimulation of bone growth: review and current status.
    Weiss AB; Parsons JR; Alexander H
    J Med Soc N J; 1980 Jul; 77(7):523-6. PubMed ID: 6993685
    [No Abstract]   [Full Text] [Related]  

  • 29. Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy.
    Saulis G; Rodaite-Riseviciene R; Snitka V
    Bioelectrochemistry; 2007 May; 70(2):519-23. PubMed ID: 17289442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical potentials in medullary bone.
    Weinberg C; Ilfeld FW; Rosen V; August W; Baddorf RL
    Clin Orthop Relat Res; 1982; (171):256-63. PubMed ID: 7140076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated measurement of intestinal mucosa electrical parameters using a new digital clamp.
    Mathieu J; Mammar S; Eto B
    Methods Find Exp Clin Pharmacol; 2008 Oct; 30(8):591-8. PubMed ID: 19088943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of low charge injection densities on corrosion responses of pulsed 316LVM stainless steel electrodes.
    Riedy LW; Walter JS
    IEEE Trans Biomed Eng; 1996 Jun; 43(6):660-3. PubMed ID: 8987272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats.
    El-Hakim IE; Azim AM; El-Hassan MF; Maree SM
    Int J Oral Maxillofac Surg; 2004 Jan; 33(1):42-7. PubMed ID: 14690658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The influence of electrical micro-currents on osteogenesis].
    Chamay A; Richez J; Biéler L
    Rev Chir Orthop Reparatrice Appar Mot; 1972; 58(5):389-98. PubMed ID: 4267265
    [No Abstract]   [Full Text] [Related]  

  • 35. The effects of varying current levels of electrical stimulation.
    Paterson DC; Carter RF; Tilbury RF; Ludbrook J; Savage JP
    Clin Orthop Relat Res; 1982 Sep; (169):303-12. PubMed ID: 6980765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes.
    Sakaguchi H; Fujikado T; Fang X; Kanda H; Osanai M; Nakauchi K; Ikuno Y; Kamei M; Yagi T; Nishimura S; Ohji M; Yagi T; Tano Y
    Jpn J Ophthalmol; 2004; 48(3):256-61. PubMed ID: 15175918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of electrode surface area on thresholds for AC stimulation and ventricular fibrillation.
    Patel SG; Malkin RA
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1829-36. PubMed ID: 17926681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cathodic oxygen consumption and electrically induced osteogenesis.
    Brighton CT; Adler S; Black J; Itada N; Friedenberg ZB
    Clin Orthop Relat Res; 1975; (107):277-82. PubMed ID: 236849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical power sources for pacemakers: electrocatalytic investigation of various oxygen cathodes using stainless steel anodes.
    Reynolds LW; Tye F; Thronton C
    J Biomed Mater Res; 1969 Dec; 3(4):673-80. PubMed ID: 5360018
    [No Abstract]   [Full Text] [Related]  

  • 40. Development of catalytic platinum-binder electrodes for glucose determination.
    Lemke K; Lewandowski J; Görner M; Krzymien J; Nałecz M; Szczepanska-Sadowska E
    Biomed Biochim Acta; 1985; 44(10):1445-57. PubMed ID: 4084250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.