These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3999732)

  • 1. A macrophage-mediated factor that increases the high energy phosphate content of skeletal muscle.
    Morris AS; Shearer J; Henry W; Mastrofrancesco B; Caldwell MD
    J Surg Res; 1985 Apr; 38(4):373-82. PubMed ID: 3999732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage interaction with skeletal muscle: a potential role of macrophages in determining the energy state of healing wounds.
    Morris A; Henry W; Shearer J; Caldwell M
    J Trauma; 1985 Aug; 25(8):751-7. PubMed ID: 4020909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship of purine metabolism to the macrophage-mediated increase of high energy phosphates in skeletal muscle.
    Morris AS; Shearer JD; Forster J; Mastrofrancesco B; Henry W; Caldwell MD
    J Surg Res; 1986 Oct; 41(4):339-46. PubMed ID: 3773494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can lactate be used as a fuel by wounded tissue?
    Amaral JF; Shearer JD; Mastrofrancesco B; Gann DS; Caldwell MD
    Surgery; 1986 Aug; 100(2):252-61. PubMed ID: 3738754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamine metabolism in rat skeletal muscle wounded with lambda-carrageenan.
    Albina JE; Henry W; King PA; Shearer J; Mastrofrancesco B; Goldstein L; Caldwell MD
    Am J Physiol; 1987 Jan; 252(1 Pt 1):E49-56. PubMed ID: 2880509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue metabolite levels in different types of skeletal muscle during sepsis.
    Angerås U; Hall-Angerås M; Wagner KR; James H; Hasselgren PO; Fischer JE
    Metabolism; 1991 Nov; 40(11):1147-51. PubMed ID: 1943743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbofuran-induced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine.
    Milatovic D; Gupta RC; Dekundy A; Montine TJ; Dettbarn WD
    Toxicology; 2005 Mar; 208(1):13-24. PubMed ID: 15664429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphocreatine and ATP concentrations increase during flow-stimulated metabolism in a non-contracting muscle.
    Mejsnar JA; Kushmerick MJ; Williams DL
    Experientia; 1992 Dec; 48(11-12):1125-7. PubMed ID: 1473577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation.
    Seider MJ; Kapp R; Chen CP; Booth FW
    Biochem J; 1980 Apr; 188(1):247-54. PubMed ID: 7406883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose uptake and flux through phosphofructokinase in wounded rat skeletal muscle.
    Forster J; Morris AS; Shearer JD; Mastrofrancesco B; Inman KC; Lawler RG; Bowen W; Caldwell MD
    Am J Physiol; 1989 Jun; 256(6 Pt 1):E788-97. PubMed ID: 2525343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological analysis of regulation of phosphocreatine and ATP metabolism in resting skeletal muscle.
    Debowy J; Dynarowicz I; Garbuliński T
    Arch Immunol Ther Exp (Warsz); 1976; 24(2):285-90. PubMed ID: 1275665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of carbonic anhydrase inhibitors on contraction, intracellular pH and energy-rich phosphates of rat skeletal muscle.
    Geers C; Gros G
    J Physiol; 1990 Apr; 423():279-97. PubMed ID: 2388152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy phosphates and surface oxygen pressure fields in skeletal muscle after high-energy trauma.
    Lovén L; Bengtsson M; Jansson I; Larsson J; Larsson L; Lennquist S; Lund N
    Int J Microcirc Clin Exp; 1987; 6(1):45-55. PubMed ID: 3583578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose metabolism of injured skeletal muscle: the contribution of inflammatory cells.
    Shearer JD; Amaral JF; Caldwell MD
    Circ Shock; 1988 Jul; 25(3):131-8. PubMed ID: 3168170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of superfused rat skeletal muscle for metabolic studies: assessment of pH by 31P n.m.r.
    Meynial-Denis D; Mignon M; Foucat L; Bonnet Y; Bielicki G; Renou JP; Lacourt P; Lacourt A; Arnal M
    Biochem J; 1993 Jul; 293 ( Pt 2)(Pt 2):399-405. PubMed ID: 8343121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-energy carriers in human cultured muscle cells.
    Bolhuis PA; de Zwart HJ; Ponne NJ; de Jong JM
    Muscle Nerve; 1985 Jan; 8(1):22-6. PubMed ID: 4058454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy metabolism in relation to oxygen supply in contracting rat skeletal muscle.
    Idström JP; Subramanian VH; Chance B; Scherstén T; Bylund-Fellenius AC
    Fed Proc; 1986 Dec; 45(13):2937-41. PubMed ID: 3780997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study.
    Gilles RJ; D'Orio V; Ciancabilla F; Carlier PG
    Crit Care Med; 1994 Mar; 22(3):499-505. PubMed ID: 8125002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro preparation of the extensor digitorum communis muscle from the chick (Gallus domesticus) for studies of protein turnover.
    Baracos VE; Langman M; Mak A
    Comp Biochem Physiol A Comp Physiol; 1989; 92(4):555-63. PubMed ID: 2566420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of parathyroid hormone on energy metabolism of skeletal muscle.
    Baczynski R; Massry SG; Magott M; el-Belbessi S; Kohan R; Brautbar N
    Kidney Int; 1985 Nov; 28(5):722-7. PubMed ID: 2935672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.