BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3999939)

  • 1. Magnetic field dependence of spin-lattice relaxation enhancement using piperidinyl nitroxyl spin-labels.
    Lovin JD; Wesbey GE; Engelstad BL; Sosnovsky G; Moseley M; Tuck DL; Brasch RC
    Magn Reson Imaging; 1985; 3(1):73-81. PubMed ID: 3999939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diradical nitroxyl spin label contrast agents for magnetic resonance imaging. A comparison of relaxation effectiveness.
    Ehman RL; Brasch RC; McNamara MT; Erikkson U; Sosnovsky G; Lukszo J; Li SW
    Invest Radiol; 1986 Feb; 21(2):125-31. PubMed ID: 3007389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.
    Kundu K; Kattnig DR; Mladenova BY; Grampp G; Das R
    J Phys Chem B; 2015 Mar; 119(12):4501-11. PubMed ID: 25775000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitroxides on the magnetic field and temperature dependence of 1/T1 of solvent water protons.
    Bennett HF; Brown RD; Koenig SH; Swartz HM
    Magn Reson Med; 1987 Feb; 4(2):93-111. PubMed ID: 3031423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The magnetic field dependence of water proton T1 in aqueous solutions: implications for magnetic imaging contrast media.
    Bryant RG; Polnaszek C; Kennedy S; Hetzler J; Hickerson D
    Med Phys; 1984; 11(5):712-3. PubMed ID: 6503888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration dependence of nitroxyl spin probes in liposomal solution: electron spin resonance and overhauser-enhanced magnetic resonance studies.
    Meenakumari V; Utsumi H; Jawahar A; Franklin Benial AM
    J Liposome Res; 2018 Jun; 28(2):87-96. PubMed ID: 27892752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear spin relaxation study of aqueous raffinose solution in the presence of a gadolinium contrast agent.
    Ghalebani L; Kruk D; Kowalewski J
    Magn Reson Chem; 2005 Mar; 43(3):235-9. PubMed ID: 15625722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paramagnetic agents for contrast-enhanced NMR imaging: a review.
    Runge VM; Clanton JA; Lukehart CM; Partain CL; James AE
    AJR Am J Roentgenol; 1983 Dec; 141(6):1209-15. PubMed ID: 6606318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field dependence of proton spin-lattice relaxation times.
    Korb JP; Bryant RG
    Magn Reson Med; 2002 Jul; 48(1):21-6. PubMed ID: 12111928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proton relaxation enhancement investigation of the binding of fatty acid spin labels to human serum albumin.
    Slane JM; Lai CS; Hyde JS
    Magn Reson Med; 1986 Oct; 3(5):699-706. PubMed ID: 3023785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water translational motion at the bilayer interface: an NMR relaxation dispersion measurement.
    Hodges MW; Cafiso DS; Polnaszek CF; Lester CC; Bryant RG
    Biophys J; 1997 Nov; 73(5):2575-9. PubMed ID: 9370451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High frequency dynamics in hemoglobin measured by magnetic relaxation dispersion.
    Victor K; Van-Quynh A; Bryant RG
    Biophys J; 2005 Jan; 88(1):443-54. PubMed ID: 15475581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paramagnetic relaxation of protons in rotationally immobilized proteins.
    Korb JP; Diakova G; Bryant RG
    J Chem Phys; 2006 Apr; 124(13):134910. PubMed ID: 16613480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic relaxation dispersion of 7Li. II. Complex formation with nitroxides in the aqueous phase.
    Dinesen TR; Bryant RG
    J Magn Reson; 1998 May; 132(1):19-24. PubMed ID: 9615409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin.
    Budker V; Du JL; Seiter M; Eaton GR; Eaton SS
    Biophys J; 1995 Jun; 68(6):2531-42. PubMed ID: 7647256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic nuclear polarization properties of nitroxyl radical in high viscous liquid using Overhauser-enhanced Magnetic Resonance Imaging (OMRI).
    Kumara Dhas M; Utsumi H; Jawahar A; Milton Franklin Benial A
    J Magn Reson; 2015 Aug; 257():32-8. PubMed ID: 26047309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels.
    Gillespie JR; Shortle D
    J Mol Biol; 1997 Apr; 268(1):158-69. PubMed ID: 9149149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR measurement of the degree of oil/water partition of paramagnetic contrast media.
    Hall LD; Hogan PG
    Magn Reson Med; 1988 Jun; 7(2):248-52. PubMed ID: 3398773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxivity enhancement of low molecular weight nitroxide stable free radicals: importance of structure and medium.
    Vallet P; Van Haverbeke Y; Bonnet PA; Subra G; Chapat JP; Muller RN
    Magn Reson Med; 1994 Jul; 32(1):11-5. PubMed ID: 8084224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-field dynamic nuclear polarization in aqueous solutions.
    Prandolini MJ; Denysenkov VP; Gafurov M; Endeward B; Prisner TF
    J Am Chem Soc; 2009 May; 131(17):6090-2. PubMed ID: 19361195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.