These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4000009)

  • 21. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.
    Wang S; Chin BJ; Gentile F; Kunselman AR; Palanzo D; Ündar A
    Artif Organs; 2016 Jan; 40(1):89-94. PubMed ID: 26153848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An in vitro method to quantitate gaseous microemboli production of bubble oxygenators. 1982.
    Sakauye LM; Servas FM; O'Connor KB; Cottonaro C
    J Extra Corpor Technol; 2011 Sep; 43(3):172-9. PubMed ID: 22165167
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of Oxygenator Size on Air Removal Characteristics: A Clinical Evaluation.
    Stehouwer MC; de Vroege R; Kelder JC; Hofman FN; de Mol BA; Bruins P
    ASAIO J; 2016; 62(4):421-6. PubMed ID: 26919180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A clinical comparison of bubble elimination in Quadrox and Polystan oxygenators.
    Jirschik M; Keyl C; Beyersdorf F
    Perfusion; 2009 Nov; 24(6):423-7. PubMed ID: 20093338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An In-Vitro Study Comparing the GME Handling of Two Contemporary Oxygenators.
    Gisnarian CJ; Hedman A; Shann KG
    J Extra Corpor Technol; 2017 Dec; 49(4):262-272. PubMed ID: 29302117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can the oxygenator screen filter reduce gaseous microemboli?
    Johagen D; Appelblad M; Svenmarker S
    J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles.
    Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R
    Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Runaway pump head: new cause of gas embolism during cardiopulmonary bypass.
    Kurusz M; Shaffer CW; Christman EW; Tyers GF
    J Thorac Cardiovasc Surg; 1979 May; 77(5):792-5. PubMed ID: 431117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasound detection of micro-emboli in the middle cerebral artery during cardiopulmonary bypass surgery.
    Deverall PB; Padayachee TS; Parsons S; Theobold R; Battistessa SA
    Eur J Cardiothorac Surg; 1988; 2(4):256-60. PubMed ID: 3078422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of bubble release from various types of oxygenators. An in vivo investigation.
    Pedersen TH; Karlsen HM; Semb G; Hatteland K
    Scand J Thorac Cardiovasc Surg; 1987; 21(1):73-80. PubMed ID: 3495879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypovolemia in extracorporeal life support can lead to arterial gaseous microemboli.
    Simons AP; Ganushchak YM; Teerenstra S; Bergmans DC; Maessen JG; Weerwind PW
    Artif Organs; 2013 Mar; 37(3):276-82. PubMed ID: 23419147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli.
    Nollert G; Nagashima M; Bucerius J; Shin'oka T; Jonas RA
    J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1166-71. PubMed ID: 10343268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Air removal efficiency of a venous bubble trap in a minimal extracorporeal circuit during coronary artery bypass grafting.
    Roosenhoff TP; Stehouwer MC; De Vroege R; Butter RP; Van Boven WJ; Bruins P
    Artif Organs; 2010 Dec; 34(12):1092-8. PubMed ID: 20545664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hematic Antegrade Repriming Reduces Emboli on Cardiopulmonary Bypass: A Randomized Controlled Trial.
    Blanco-Morillo J; Salmerón Martínez D; Morillo-Cuadrado DV; Arribas-Leal JM; Puis L; Verdú-Verdú A; Martínez-Molina M; Tormos-Ruiz E; Sornichero-Caballero A; Ramírez-Romero P; Farina P; Cánovas-López S
    ASAIO J; 2023 Mar; 69(3):324-331. PubMed ID: 35609139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perfluorocarbon oxygen transport. A comparative study of four oxygenator designs.
    Ferguson ER; Clymer JJ; Spruell RD; Holman WL
    ASAIO J; 1994; 40(3):M649-53. PubMed ID: 8555594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of the oxygenator: past, present, and future.
    Iwahashi H; Yuri K; Nosé Y
    J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elimination of gaseous microemboli from cardiopulmonary bypass using hypobaric oxygenation.
    Gipson KE; Rosinski DJ; Schonberger RB; Kubera C; Mathew ES; Nichols F; Dyckman W; Courtin F; Sherburne B; Bordey AF; Gross JB
    Ann Thorac Surg; 2014 Mar; 97(3):879-86. PubMed ID: 24206970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microemboli detection on extracorporeal bypass circuits.
    Lynch JE; Riley JB
    Perfusion; 2008 Jan; 23(1):23-32. PubMed ID: 18788214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.