These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4000010)

  • 1. Removal of gaseous microemboli from extracorporeal circulation.
    Pascale F
    Med Instrum; 1985; 19(2):70-2. PubMed ID: 4000010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Product design and its relation to the generation of gaseous microemboli in the extracorporeal circuit.
    Servas FM
    Med Instrum; 1985; 19(2):63-6. PubMed ID: 4000008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model.
    Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A
    ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of air embolism due to trapped air in filters used in extracorporeal circuits.
    Wellons HA; Nolan SP
    J Thorac Cardiovasc Surg; 1973 Mar; 65(3):476-8. PubMed ID: 4686666
    [No Abstract]   [Full Text] [Related]  

  • 5. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air removal efficiency of a venous bubble trap in a minimal extracorporeal circuit during coronary artery bypass grafting.
    Roosenhoff TP; Stehouwer MC; De Vroege R; Butter RP; Van Boven WJ; Bruins P
    Artif Organs; 2010 Dec; 34(12):1092-8. PubMed ID: 20545664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The clinical application of the Doppler flow meter, as a detector of microemboli, particularly microbubbles in extracorporeal circulation (author's transl)].
    Tamiya T; Nishizawa S; Koja K; Suzuki I; Shiramatsu K; Ogata K
    Kyobu Geka; 1978; 31(4):293-8. PubMed ID: 148538
    [No Abstract]   [Full Text] [Related]  

  • 8. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microemboli: an overview.
    Clark RE
    Med Instrum; 1985; 19(2):53-4. PubMed ID: 4000007
    [No Abstract]   [Full Text] [Related]  

  • 10. [Origin and importance of particles causing microembolisms and the clinical effectiveness of using filters in artificial circulation apparatus].
    Urlaub H; Brause W; Prgomet JR
    Med Tekh; 1984; (3):56-60. PubMed ID: 6379365
    [No Abstract]   [Full Text] [Related]  

  • 11. Deairing of the venous drainage in standard extracorporeal circulation results in a profound reduction of arterial micro bubbles.
    Stock UA; Müller T; Bienek R; Krause H; Hartrumpf M; Albes J
    Thorac Cardiovasc Surg; 2006 Feb; 54(1):39-41. PubMed ID: 16485187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air removal capacity of two different minimal invasive ECC systems: an in vitro comparison.
    Stehouwer MC; de Vroege R
    Perfusion; 2019 Oct; 34(7):561-567. PubMed ID: 30915891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaseous microemboli: sources, causes, and clinical considerations.
    Kurusz M
    Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound destruction of air microemboli as a novel approach to brain protection in cardiac surgery.
    Nedelmann M; Schleicher N; Doenges S; Reuter P; Kaps M; Urbanek S; Schwarz N; Madlener K; Schoenburg M; Urbanek P; Gerriets T
    J Cardiothorac Vasc Anesth; 2013 Oct; 27(5):876-83. PubMed ID: 23791496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass.
    Padayachee TS; Parsons S; Theobold R; Gosling RG; Deverall PB
    Ann Thorac Surg; 1988 Jun; 45(6):647-9. PubMed ID: 3288143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of air retention by different extracorporeal filters during artificial circulation].
    Pisarevskiĭ AA; Osipov VP; Kobakidze EA; Matveev IuG
    Med Tekh; 1992; (2):14-6. PubMed ID: 1513232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model.
    Undar A; Ji B; Kunselman AR; Myers JL
    ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bubble tracking through computational fluid dynamics in arterial line filters for cardiopulmonary bypass.
    Fiore GB; Morbiducci U; Ponzini R; Redaelli A
    ASAIO J; 2009; 55(5):438-44. PubMed ID: 19730002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype.
    Herbst DP
    J Extra Corpor Technol; 2014 Sep; 46(3):239-50. PubMed ID: 26357790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bubble oxygenator as a source of gaseous microemboli.
    Yost G
    Med Instrum; 1985; 19(2):67-9. PubMed ID: 4000009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.