BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4000414)

  • 1. Sites of analgesic actions of kyotorphin and D-kyotorphin in the central nervous system of rats.
    Satoh M; Wada T; Iwama T; Takagi H
    Neuropeptides; 1985 Feb; 5(4-6):415-8. PubMed ID: 4000414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of tyrosyl-arginine (kyotorphin), a new opioid dipeptide, on single neurons in the spinal dorsal horn of rabbits and the nucleus reticularis paragigantocellularis of rats.
    Satoh M; Kawajiri S; Yamamoto M; Akaike A; Ukai Y; Takagi H
    Neurosci Lett; 1980 Mar; 16(3):319-22. PubMed ID: 7052447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the antinociceptive action of mesaconitine: participation of brain stem and lumbar enlargement.
    Hikino H; Murayama M
    Br J Pharmacol; 1985 Jul; 85(3):575-80. PubMed ID: 3839708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of analgesic potencies of mu, delta and kappa agonists locally applied to various CNS regions relevant to analgesia in rats.
    Satoh M; Kubota A; Iwama T; Wada T; Yasui M; Fujibayashi K; Takagi H
    Life Sci; 1983; 33 Suppl 1():689-92. PubMed ID: 6141508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The permissive action of glucocorticoid on the analgesic effect of kyotorphin and its analogue].
    Zhu Y; Qiu XC; Wang C; Peng SQ
    Yao Xue Xue Bao; 1993; 28(3):166-71. PubMed ID: 8368074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of kyotorphin by a purified membrane-bound-aminopeptidase from monkey brain: potentiation of kyotorphin-induced analgesia by a highly effective inhibitor, bestatin.
    Ueda H; Ming G; Hazato T; Katayama T; Takagi H
    Life Sci; 1985 May; 36(19):1865-71. PubMed ID: 3990513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analgesia by enkephalins injected into the nucleus reticularis gigantocellularis of rat medulla oblongata.
    Takagi H; Satoh M; Akaike A; Shibata T; Yajima H; Ogawa H
    Eur J Pharmacol; 1978 May; 49(1):113-6. PubMed ID: 658122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the sites at which pentazocine and morphine act to produce analgesia.
    Llewelyn MB; Azami J; Gibbs M; Roberts MHT
    Pain; 1983 Aug; 16(4):313-331. PubMed ID: 6622044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique.
    Azami J; Llewelyn MB; Roberts MHT
    Pain; 1982 Mar; 12(3):229-246. PubMed ID: 7078984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of D-kyotorphin on nociception and NADPH-d neurons in rat's periaqueductal gray after immobilization stress.
    Dzambazova EB; Landzhov BV; Bocheva AI; Bozhilova-Pastirova AA
    Amino Acids; 2011 Oct; 41(4):937-44. PubMed ID: 21046177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolytic deactivation of kyotorphin by the rodent brain homogenates and sera.
    Matsubayashi K; Kojima C; Kawajiri S; Ono K; Takegoshi T; Ueda H; Takagi H
    J Pharmacobiodyn; 1984 Jul; 7(7):479-84. PubMed ID: 6541692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of nociceptive responses after systemic administration of amidated kyotorphin.
    Ribeiro MM; Pinto A; Pinto M; Heras M; Martins I; Correia A; Bardaji E; Tavares I; Castanho M
    Br J Pharmacol; 2011 Jul; 163(5):964-73. PubMed ID: 21366550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of antinociception induced by supraspinally administered L-arginine and kyotorphin.
    Kawabata A; Manabe S; Takagi H
    Br J Pharmacol; 1994 Jul; 112(3):817-22. PubMed ID: 7921607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spinal antinociceptive effect of kyotorphin in mice: involvement of the descending noradrenergic and serotonergic systems.
    Ochi T; Ohkubo Y; Mutoh S
    Neurosci Lett; 2002 Aug; 329(2):193-6. PubMed ID: 12165410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of the antinociceptive effect of spinally administered kyotorphin by naltrindole in mice.
    Ochi T; Ohkubo Y; Mutoh S
    Neurosci Lett; 2002 Apr; 322(2):95-8. PubMed ID: 11958852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The periaqueductal gray is the site of the antinociceptive action of carbamazepine as related to bradykinin-induced trigeminal pain.
    Foong FW; Satoh M
    Br J Pharmacol; 1984 Oct; 83(2):493-7. PubMed ID: 6487904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons.
    Budai D; Fields HL
    J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial involvement of monoamines and opiates in the inhibition of rat spinal nociceptive neurons evoked by stimulation in midbrain periaqueductal gray or lateral reticular formation.
    Carstens E; Culhane ES; Banisadr R
    Brain Res; 1990 Jul; 522(1):7-13. PubMed ID: 2224516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression by flupirtine, a novel analgesic agent, of motor and sensory responses of the nociceptive system in the rat spinal cord.
    Carlsson KH; Jurna I
    Eur J Pharmacol; 1987 Nov; 143(1):89-99. PubMed ID: 3691652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sites of analgesic action of dynorphin.
    Kaneko T; Nakazawa T; Ikeda M; Yamatsu K; Iwama T; Wada T; Satoh M; Takagi H
    Life Sci; 1983; 33 Suppl 1():661-4. PubMed ID: 6141507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.