These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4001863)

  • 1. Progress in element analysis on a high-voltage electron microscope.
    Tivol WF; Barnard D; Guha T
    Scan Electron Microsc; 1985; (Pt 1):455-66. PubMed ID: 4001863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elemental microanalysis of biological specimens.
    Roomans GM; Wroblewski J; Wróblewski R
    Scanning Microsc; 1988 Jun; 2(2):937-46. PubMed ID: 3399859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Element standards for quantitative X-ray microanalysis of biological specimens in the scanning transmission electron microscope].
    Grote M; Quint P; Fromme HG
    Acta Histochem; 1981; 68(2):263-78. PubMed ID: 6791448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission electron microscopic x-ray quantitative analysis of human dentin at 200 kV accelerating voltage.
    Yonehara K; Shinohara M; Kanaya K
    J Electron Microsc Tech; 1990 Nov; 16(3):240-8. PubMed ID: 2243280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image-EELS: a synthesis of energy-loss analysis and imaging.
    Körtje KH
    Scanning Microsc Suppl; 1994; 8():277-87;discussion 287-8. PubMed ID: 7638493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in electron energy loss analysis for biological specimens.
    Cosslett VE
    Scan Electron Microsc; 1980; (Pt 2):575-82, 534. PubMed ID: 6999609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of lens chromatic aberration on electron energy-loss spectroscopy quantitative measurements.
    Yang YY; Egerton RF
    Microsc Res Tech; 1992 Jun; 21(4):361-7. PubMed ID: 1638055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass determination of thin biological specimens for use in quantitative electron probe X-ray microanalysis.
    Linders PW; Stols AL; van de Vorstenbosch RA; Stadhouders AM
    Scan Electron Microsc; 1982; (Pt 4):1603-15. PubMed ID: 7184142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EDX and EELS in the high-voltage electron microscope: localization of elements in thick specimens.
    Tivol WF; Ratkowski AJ; Parsons DF
    Neurotoxicology; 1983; 4(3):161-3. PubMed ID: 6686304
    [No Abstract]   [Full Text] [Related]  

  • 10. X-ray microanalysis with the environmental scanning electron microscope: interpretation of data obtained under different atmospheric conditions.
    Sigee DC; Gilpin C
    Scanning Microsc Suppl; 1994; 8():219-27; discussion 227-9. PubMed ID: 7638489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron probe microanalysis of biological soft tissues: principle and technique.
    Lechene C
    Fed Proc; 1980 Sep; 39(11):2871-80. PubMed ID: 7409208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of early hard tissue formation in dentine by energy dispersive X-ray microanalysis and energy-filtering transmission electron microscopy.
    Wiesmann HP; Plate U; Höhling HJ; Barckhaus RH; Zierold K
    Scanning Microsc; 1993 Jun; 7(2):711-8. PubMed ID: 8108683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined energy detector-wavelength dispersive spectrometer electron probe microanalysis of biological soft tissue samples.
    Ingram FD; Ingram MJ
    Scan Electron Microsc; 1983; (Pt 2):853-60. PubMed ID: 6635579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration Specimens for Determining Energy-Dispersive X-ray k-Factors of Boron, Nitrogen, Oxygen, and Fluorine.
    Malac M; Egerton RF
    Microsc Microanal; 1999 Jan; 5(1):29-38. PubMed ID: 10227824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperspectral mapping-combining cathodoluminescence and X-ray collection in an electron microprobe.
    Macrae CM; Wilson NC; Johnson SA; Phillips PL; Otsuki M
    Microsc Res Tech; 2005 Aug; 67(5):271-7. PubMed ID: 16170823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ideal standards for quantitative x-ray microanalysis of biological specimens.
    de Bruijn WC
    Scan Electron Microsc; 1981; (Pt 2):357-67. PubMed ID: 7034175
    [No Abstract]   [Full Text] [Related]  

  • 17. Elemental mapping using the Ga 3d and In 4d transitions in the epsilon2 absorption spectra derived from EELS.
    Gass MH; Papworth AJ; Bullough TJ; Chalker PR
    Ultramicroscopy; 2004 Nov; 101(2-4):257-64. PubMed ID: 15450671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standards for X-ray microanalysis of calcified structures.
    Lopez-Escamez JA; Campos A
    Scanning Microsc Suppl; 1994; 8():171-85. PubMed ID: 7638486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of electron energy loss spectroscopy microanalysis to the study of the spatial distribution of iodine atoms in the lysosomes of thyroid cells in mice].
    Larras-Regard E
    C R Seances Soc Biol Fil; 1985; 179(5):586-90. PubMed ID: 2938686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray microanalysis of frozen-hydrated specimens.
    Zierold K
    Scan Electron Microsc; 1983; (Pt 2):809-26. PubMed ID: 6635577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.