BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 4002961)

  • 1. Identification and synthesis in vitro of plant-specific proteins in yellow lupin root nodules.
    Strózycki P; Konieczny A; Legocki AB
    Acta Biochim Pol; 1985; 32(1):27-34. PubMed ID: 4002961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nodule-specific repression of yellow lupin protein R18.
    Madrzak CJ; Kulikova O; Legocki AB
    Acta Biochim Pol; 1989; 36(3-4):275-83. PubMed ID: 2486003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of "nodule-specific" host proteins (nodoulins) involved in the development of rhizobium-legume symbiosis.
    Legocki RP; Verma DP
    Cell; 1980 May; 20(1):153-63. PubMed ID: 7388942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of root nodule proteins from lupin.
    Strózycki P; Legocki AB
    Acta Biochim Pol; 1988; 35(1):39-50. PubMed ID: 3176786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated synthesis of leghemoglobin and root protein R18 in yellow lupin.
    Sikorski MM; Szybiak-Strózycka U; Strózycki P; Golińska B; Madrzak CJ; Kamp RM; Wittmann-Liebold B; Legocki AB
    Acta Biochim Pol; 1989; 36(1):63-72. PubMed ID: 2750411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine-rich proteins encoded by a nodule-specific gene family are implicated in different stages of symbiotic nodule development in Medicago spp.
    Kevei Z; Vinardell JM; Kiss GB; Kondorosi A; Kondorosi E
    Mol Plant Microbe Interact; 2002 Sep; 15(9):922-31. PubMed ID: 12236598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ hybridization of two nodule-specific gene products from yellow lupin.
    Olszewska MJ; Karłowski W; Legocki AB
    Folia Histochem Cytobiol; 1994; 32(3):205-8. PubMed ID: 7843467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and expression analysis of the yellow lupin (Lupinus luteus L.) gene coding for nodule specific proline-rich protein.
    Karłowski WM; Strózycki PM; Legocki AB
    Acta Biochim Pol; 2000; 47(2):371-83. PubMed ID: 11051202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula.
    Gargantini PR; Gonzalez-Rizzo S; Chinchilla D; Raices M; Giammaria V; Ulloa RM; Frugier F; Crespi MD
    Plant J; 2006 Dec; 48(6):843-56. PubMed ID: 17132148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signalling in symbiotic root nodule formation.
    van de Sande K; Bisseling T
    Essays Biochem; 1997; 32():127-42. PubMed ID: 9493016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nodulation genes in the Rhizobium--plant signal exchange.
    Lorkiewicz Z
    Acta Biochim Pol; 1997; 44(1):1-12. PubMed ID: 9241349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomeneae tribe.
    Sinharoy S; Saha S; Chaudhury SR; Dasgupta M
    Mol Plant Microbe Interact; 2009 Feb; 22(2):132-42. PubMed ID: 19132866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A plant regulator controlling development of symbiotic root nodules.
    Schauser L; Roussis A; Stiller J; Stougaard J
    Nature; 1999 Nov; 402(6758):191-5. PubMed ID: 10647012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of ectopic roots from abortive nodule primordia.
    Ferraioli S; Tatè R; Rogato A; Chiurazzi M; Patriarca EJ
    Mol Plant Microbe Interact; 2004 Oct; 17(10):1043-50. PubMed ID: 15497397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Proteins and heme of lupin nodules in the process of vegetation and in relation to the effectiveness of symbiosis].
    Melik-Sarkisian SS; Cherniad'eva IF; Kretovich VL
    Biokhimiia; 1972; 37(2):415-23. PubMed ID: 5024651
    [No Abstract]   [Full Text] [Related]  

  • 16. The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweetclover-Sinorhizobium meliloti interaction.
    Giordano W; Hirsch AM
    Mol Plant Microbe Interact; 2004 Jun; 17(6):613-22. PubMed ID: 15195944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipochitooligosaccharides and legume Rhizobium symbiosis--a new concept.
    Chimote V; Kashyap LR
    Indian J Exp Biol; 2001 May; 39(5):401-9. PubMed ID: 11510121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial and plant glycoconjugates at the Rhizobium-legume interface.
    Brewin NJ; Rae AL; Perotto S; Kannenberg EL; Rathbun EA; Lucas MM; Gunder A; Bolaños L; Kardailsky IV; Wilson KE
    Biochem Soc Symp; 1994; 60():61-73. PubMed ID: 7639793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily.
    Heard J; Caspi M; Dunn K
    Mol Plant Microbe Interact; 1997 Jul; 10(5):665-76. PubMed ID: 9204570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants.
    Velázquez E; Peix A; Zurdo-Piñeiro JL; Palomo JL; Mateos PF; Rivas R; Muñoz-Adelantado E; Toro N; García-Benavides P; Martínez-Molina E
    Mol Plant Microbe Interact; 2005 Dec; 18(12):1325-32. PubMed ID: 16478052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.