These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4003162)

  • 1. Parvalbumin reduction in relation to possible perturbations of Ca2+-homeostasis in muscular dystrophy.
    Pette D; Klug G; Reichmann H
    Adv Exp Med Biol; 1985; 182():265-7. PubMed ID: 4003162
    [No Abstract]   [Full Text] [Related]  

  • 2. Control of levels of glucose 1,6-bisphosphate.
    Beitner R
    Int J Biochem; 1984; 16(6):579-85. PubMed ID: 6088312
    [No Abstract]   [Full Text] [Related]  

  • 3. Decreased parvalbumin contents in skeletal muscles of C57BL/6J(dy2J/dy2J) dystrophic mice.
    Klug G; Reichmann H; Pette D
    Muscle Nerve; 1985 Sep; 8(7):576-9. PubMed ID: 4047089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A developmental change in the content of parvalbumin in normal and dystrophic mouse (mdx) muscle.
    Sano M; Yokota T; Endo T; Tsukagoshi H
    J Neurol Sci; 1990 Jul; 97(2-3):261-72. PubMed ID: 2119423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes and tissue distribution of parvalbumin in normal and dystrophic mice of strain 129 ReJ.
    Greaves DS; Dufresne MJ; Fackrell HB; Warner AH
    Muscle Nerve; 1991 Jun; 14(6):543-52. PubMed ID: 1852161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of calcium by parvalbumin fragments.
    Derancourt J; Haiech J; Pechère JF
    Biochim Biophys Acta; 1978 Feb; 532(2):373-5. PubMed ID: 623786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2(+)-binding site of carp parvalbumin recognized by monoclonal antibody.
    Tinner R; Oertle M; Heizmann CW; Bosshard HR
    Cell Calcium; 1990 Jan; 11(1):19-23. PubMed ID: 1690078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calorimetric study of Ca2+ binding by the parvalbumin of the toad (Bufo): distinguishable binding sites in the molecule.
    Tanokura M; Imaizumi M; Yamada K
    FEBS Lett; 1986 Dec; 209(1):77-82. PubMed ID: 3100327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulatory role of glucose 1,6-diphosphate in muscle of dystrophic mice.
    Beitner R; Nordenberg J
    FEBS Lett; 1979 Feb; 98(1):199-202. PubMed ID: 428537
    [No Abstract]   [Full Text] [Related]  

  • 10. [Kinetics of dissociation of parvalbumin complexes with calcium and magnesium ions].
    Permiakov EA; Ostrovskiĭ AV; Kalinichenko LP; Deĭkus GIu
    Mol Biol (Mosk); 1987; 21(4):1017-22. PubMed ID: 3657779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice.
    Turner PR; Westwood T; Regen CM; Steinhardt RA
    Nature; 1988 Oct; 335(6192):735-8. PubMed ID: 3173492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of calcium-parvalbumin complex during contraction. A source of "unexplained heat"?
    Gillis JM; Thomason D; Lefevre J; Kretsinger RH
    Adv Exp Med Biol; 1984; 170():573-9. PubMed ID: 6741709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The levels of cyclic GMP and glucose 1,6-diphosphate, and the activity of phosphofructokinase, in muscle from normal and dystrophic mice.
    Beitner R; Haberman S; Nordenberg J; Cohen TJ
    Biochim Biophys Acta; 1978 Sep; 542(3):537-41. PubMed ID: 210843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium and potassium binding to parvalbumins measured by means of intrinsic protein fluorescence.
    Permyakov EA; Kalinichenko LP; Medvedkin VN; Burstein EA; Gerday C
    Biochim Biophys Acta; 1983 Dec; 749(2):185-91. PubMed ID: 6652098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium complexation by the calcium binding site of parvalbumin.
    Grandjean J; Laszlo P; Gerday C
    FEBS Lett; 1977 Sep; 81(2):376-80. PubMed ID: 923807
    [No Abstract]   [Full Text] [Related]  

  • 16. Changes in glucose 1,6-diphosphate and in the activities of phosphofructokinase, phosphoglucomutase and glucose 1,6-diphosphate phosphatase induced by fasting and refeeding in dystrophic muscle.
    Beitner R; Nordenberg J; Cohen TJ
    FEBS Lett; 1979 Aug; 104(2):244-8. PubMed ID: 225208
    [No Abstract]   [Full Text] [Related]  

  • 17. Ca2(+)-dependent mobility shift of parvalbumin in one- and two-dimensional gel-electrophoresis.
    Gregersen HJ; Heizmann CW; Kaegi U; Celio MR
    Adv Exp Med Biol; 1990; 269():89-91. PubMed ID: 2112827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of genes involved in the calcium homeostasis in masticatory muscles of MDX mice.
    Kunert-Keil CH; Gredes T; Lucke S; Botzenhart U; Dominiak M; Gedrange T
    J Physiol Pharmacol; 2014 Apr; 65(2):317-24. PubMed ID: 24781740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of Ca2+-binding centers of parvalbumin by the distant fine structure of x-ray absorption spectra].
    Vazina AA; Korystova AF; Shelestov VM; Vernoslov SE; Lunin VIu
    Mol Biol (Mosk); 1984; 18(3):681-4. PubMed ID: 6472266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of calcium binding proteins, parvalbumin and alpha-lactalbumin, with dipalmitoylphosphatidylcholine vesicles.
    Permyakov EA; Kreimer DI; Kalinichenko LP; Shnyrov VL
    Gen Physiol Biophys; 1988 Feb; 7(1):95-107. PubMed ID: 3396853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.