BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4004226)

  • 1. 12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum.
    Edenharder R; Schneider J
    Appl Environ Microbiol; 1985 Apr; 49(4):964-8. PubMed ID: 4004226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epimerization versus dehydroxylation of the 7 alpha-hydroxyl- group of primary bile acids: competitive studies with Clostridium absonum and 7 alpha-dehydroxylating bacteria (Eubacterium sp.).
    Macdonald IA; Hutchison DM
    J Steroid Biochem; 1982 Sep; 17(3):295-303. PubMed ID: 6957693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of bile acids by mixed microbial cultures from human feces and bile acid transforming activities of isolated bacterial strains.
    Hirano S; Masuda N; Oda H; Imamura T
    Microbiol Immunol; 1981; 25(3):271-82. PubMed ID: 7253965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms.
    MacDonald IA; Rochon YP; Hutchison DM; Holdeman LV
    Appl Environ Microbiol; 1982 Nov; 44(5):1187-95. PubMed ID: 6758698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bile acid oxazoline derivatives on microorganisms participating in 7 alpha-hydroxyl epimerization of primary bile acids.
    Macdonald IA; Sutherland JD; Cohen BI; Mosbach EH
    J Lipid Res; 1983 Dec; 24(12):1550-9. PubMed ID: 6366102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of bile acids by Eubacterium lentum.
    Hirano S; Masuda N
    Appl Environ Microbiol; 1981 Nov; 42(5):912-5. PubMed ID: 6947718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial purification and characterization of an NAD-dependent 3 beta-hydroxysteroid dehydrogenase from Clostridium innocuum.
    Edenharder R; Pfützner M
    Appl Environ Microbiol; 1989 Jun; 55(6):1656-9. PubMed ID: 2764572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inability of nuclear dehydrogenating clostridia to oxidize bile salt hydroxyl groups.
    Macdonald IA; Hill MJ
    Experientia; 1979 Jun; 35(6):722-3. PubMed ID: 223870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces.
    Wells JE; Hylemon PB
    Appl Environ Microbiol; 2000 Mar; 66(3):1107-13. PubMed ID: 10698778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of NADP-dependent 12 beta-hydroxysteroid dehydrogenase from Clostridium paraputrificum.
    Edenharder R; Pfützner A
    Biochim Biophys Acta; 1988 Oct; 962(3):362-70. PubMed ID: 3167086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of intestinal 7 alpha-dehydroxylation of cholic acid: evidence that allo-deoxycholic acid is an inducible side-product.
    Hylemon PB; Melone PD; Franklund CV; Lund E; Björkhem I
    J Lipid Res; 1991 Jan; 32(1):89-96. PubMed ID: 2010697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11.c.
    Edenharder R; Pfützner M; Hammann R
    Biochim Biophys Acta; 1989 Mar; 1002(1):37-44. PubMed ID: 2923864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of 17-keto steroids by anaerobic microorganisms isolated from human fecal flora.
    Winter J; O'Rourke-Locascio S; Bokkenheuser VD; Mosbach EH; Cohen BI
    Biochim Biophys Acta; 1984 Sep; 795(2):208-11. PubMed ID: 6477942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of linoleic acid and bile acids by Eubacterium lentum.
    Eyssen H; Verhulst A
    Appl Environ Microbiol; 1984 Jan; 47(1):39-43. PubMed ID: 6582800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by Clostridium absonum.
    Sutherland JD; Macdonald IA
    J Lipid Res; 1982 Jul; 23(5):726-32. PubMed ID: 7119570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of bile acid 7-dehydroxylating bacteria from human feces.
    Takamine F; Imamura T
    Microbiol Immunol; 1995; 39(1):11-8. PubMed ID: 7783673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completion of the gut microbial epi-bile acid pathway.
    Doden HL; Wolf PG; Gaskins HR; Anantharaman K; Alves JMP; Ridlon JM
    Gut Microbes; 2021; 13(1):1-20. PubMed ID: 33938389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial metabolism of corticoids with particular reference to the 21-dehydroxylation.
    Winter J; Bokkenheuser VD; Ponticorvo L
    J Biol Chem; 1979 Apr; 254(8):2626-9. PubMed ID: 429305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the 7 alpha-dehydroxylase activity of a gram-positive intestinal anaerobe by Bacteroides and its significance in the 7-dehydroxylation of ursodeoxycholic acid.
    Hirano S; Masuda N
    J Lipid Res; 1982 Nov; 23(8):1152-8. PubMed ID: 6960114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.