BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 4004816)

  • 1. Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves.
    Duggleby RG
    Biochem J; 1985 May; 228(1):55-60. PubMed ID: 4004816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation.
    Atkins GL; Nimmo IA
    Biochem J; 1973 Dec; 135(4):779-84. PubMed ID: 4778274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions.
    Wharton CW; Szawelski RJ
    Biochem J; 1982 May; 203(2):351-60. PubMed ID: 7115291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating enzyme kinetic parameters: a computer program for linear regression and non-parametric analysis.
    Brooks SP; Suelter CH
    Int J Biomed Comput; 1986 Sep; 19(2):89-99. PubMed ID: 3770985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions.
    Duggleby RG; Clarke RB
    Biochim Biophys Acta; 1991 Nov; 1080(3):231-6. PubMed ID: 1954231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the estimation errors of K
    Stroberg W; Schnell S
    Biophys Chem; 2016 Dec; 219():17-27. PubMed ID: 27677118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical methods for fitting integrated rate equations. A discontinuous assay.
    Boeker EA
    Biochem J; 1987 Jul; 245(1):67-74. PubMed ID: 3663158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A BASIC program for the estimation of Michaelis-Menten parameters by the direct linear plot.
    Brady JF; Ishizaki H
    Comput Methods Programs Biomed; 1989 Apr; 28(4):271-2. PubMed ID: 2702819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust regression of enzyme kinetic data.
    Cornish-Bowden A; Endrenyi L
    Biochem J; 1986 Feb; 234(1):21-9. PubMed ID: 3707541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semi-integrated method for the determination of enzyme kinetic parameters and graphical representation of the Michaelis-Menten equation.
    Naqui A; Chance B
    Anal Biochem; 1984 Aug; 141(1):179-83. PubMed ID: 6496926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of initial velocities of enzymic reactions from progress curves.
    Dagys R; Pauliukonis A; Kazlauskas D; Mankevicius M; Simutis R
    Biochem J; 1986 Aug; 237(3):821-5. PubMed ID: 3800920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of progress curves for enzyme-catalysed reactions. Automatic construction of computer programs for fitting integrated rate equations.
    Duggleby RG; Wood C
    Biochem J; 1989 Mar; 258(2):397-402. PubMed ID: 2705990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme kinetic studies from progress curves.
    Canela EI; Franco R
    Biochem J; 1986 Jan; 233(2):599-605. PubMed ID: 3954757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of kinetic parameters, amount of endogenous substrate and contaminating enzyme activity in a target enzyme reaction.
    Kato T; Inoue N
    Biochim Biophys Acta; 1981 Sep; 661(1):1-11. PubMed ID: 7295732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.
    Bezerra RM; Fraga I; Dias AA
    Comput Methods Programs Biomed; 2013 Jan; 109(1):26-31. PubMed ID: 23021091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the maximum velocity and Michaelis constant of enzymes by a fixed-point method which avoids the necessity to measure initial rates.
    Duggleby RG
    Biochim Biophys Acta; 1991 May; 1078(1):124-5. PubMed ID: 2049379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress curve analysis in enzyme kinetics: model discrimination and parameter estimation.
    Duggleby RG; Morrison JF
    Biochim Biophys Acta; 1978 Oct; 526(2):398-409. PubMed ID: 718944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the kinetic parameters for enzymatic drug metabolism in the whole animal.
    Watson JV; Workman P
    Biochem Pharmacol; 1986 Jan; 35(2):145-9. PubMed ID: 3942593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of enzymes subject to very strong product inhibition: analysis using simplified integrated rate equations and average velocities.
    Schmidt ND; Peschon JJ; Segel IH
    J Theor Biol; 1983 Feb; 100(4):597-611. PubMed ID: 6876816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.