These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 4004830)
1. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions. Werner A; Heinrich R Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830 [TBL] [Abstract][Full Text] [Related]
2. Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes. Heinrich R Biomed Biochim Acta; 1985; 44(6):913-27. PubMed ID: 2931078 [TBL] [Abstract][Full Text] [Related]
3. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824 [TBL] [Abstract][Full Text] [Related]
4. A metabolic osmotic model of human erythrocytes. Brumen M; Heinrich R Biosystems; 1984; 17(2):155-69. PubMed ID: 6525455 [TBL] [Abstract][Full Text] [Related]
5. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors]. Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178 [TBL] [Abstract][Full Text] [Related]
6. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1659-82. PubMed ID: 6285649 [TBL] [Abstract][Full Text] [Related]
7. [Effect of pH on the regulatory characteristics of energy metabolism in human erythrocytes]. Platonova OV; Agranenko VA; Ataullakhanov FI; Vitvitskiĭ VM; Kiiatkina NV Biokhimiia; 1986 Aug; 51(8):1384-91. PubMed ID: 3768440 [TBL] [Abstract][Full Text] [Related]
8. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis. Mulquiney PJ; Kuchel PW Biochem J; 1999 Sep; 342 Pt 3(Pt 3):597-604. PubMed ID: 10477270 [TBL] [Abstract][Full Text] [Related]
9. [Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters]. Kholodenko BN; Dibrov BF; Zhabotinskiĭ AM Biofizika; 1981; 26(3):501-6. PubMed ID: 6455164 [TBL] [Abstract][Full Text] [Related]
10. [Intensity of glycolysis and energy metabolism in erythrocytes in experimental hypervitaminosis A]. Kriukova LV; Grozina AA; Kamaeva SI Vopr Med Khim; 1976; 22(5):640-2. PubMed ID: 138257 [TBL] [Abstract][Full Text] [Related]
11. The energy metabolism of pyruvate kinase deficient red blood cells. Jacobasch G; Holzhütter H; Bisdorf A Biomed Biochim Acta; 1983; 42(11-12):S268-72. PubMed ID: 6675701 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of red cell glycolysis. Minakami S; de Verdier CH Acta Biol Med Ger; 1977; 36(3-4):451-60. PubMed ID: 22969 [TBL] [Abstract][Full Text] [Related]
13. Kinetic studies on the calcium-dependent potassium transport in human red blood cells. Schubert A; Sarkadi B Acta Biochim Biophys Acad Sci Hung; 1977; 12(3):207-16. PubMed ID: 602669 [TBL] [Abstract][Full Text] [Related]
14. Heat production from human erythrocytes in relation to their metabolism of glucose and amino acids. Levin K; Fürst P; Harris R; Hultman E Scand J Clin Lab Invest; 1974 Oct; 34(2):141-8. PubMed ID: 4417290 [No Abstract] [Full Text] [Related]
15. Stimulation of rat red blood cell glycolysis by phenylhydrazine hydrochloride. Kostić MM; Dragićević L; Zirković R; Müller M; Rapoport SM Biomed Biochim Acta; 1990; 49(1):17-25. PubMed ID: 2141786 [TBL] [Abstract][Full Text] [Related]
16. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell. Diederichs F Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733 [TBL] [Abstract][Full Text] [Related]
18. Studies on erythrocyte glycolysis. VII. Changes of glycolytic intermediates in erythrocytes during storage in acid-citrate-dextrose medium. Oyama H; Minakami S; Yoshikawa H J Biochem; 1968 Feb; 63(2):254-60. PubMed ID: 4299378 [No Abstract] [Full Text] [Related]
19. A simulation study of oscillating glycolysis: a comparison between a model and experiments. Richter O; Vohmann HJ; Betz A Chronobiologia; 1978; 5(1):56-65. PubMed ID: 688850 [TBL] [Abstract][Full Text] [Related]
20. Restoration in vivo of erythrocyte adenosine triphosphate, 2,3-diphosphoglycerate, potassium ion, and sodium ion concentrations following the transfusion of acid-citrate-dextrose-stored human red blood cells. Valeri CR; Hirsch NM J Lab Clin Med; 1969 May; 73(5):722-33. PubMed ID: 5779258 [No Abstract] [Full Text] [Related] [Next] [New Search]