These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 4004830)

  • 21. A theoretical model for gas transport and acid/base regulation by blood flowing in microvessels.
    Huang NS; Hellums JD
    Microvasc Res; 1994 Nov; 48(3):364-88. PubMed ID: 7731399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Ion content, ion transport and membrane ATPase of erythrocytes in stored blood].
    Grobecker H; Piechowski U
    Z Klin Chem Klin Biochem; 1966 May; 4(3):126-30. PubMed ID: 4231194
    [No Abstract]   [Full Text] [Related]  

  • 23. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes.
    Rapoport TA; Heinrich R; Rapoport SM
    Biochem J; 1976 Feb; 154(2):449-69. PubMed ID: 132930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A possible role of adenylate metabolism in human erythrocytes: simple mathematical model.
    Ataullakhanov FI; Komarova SV; Vitvitsky VM
    J Theor Biol; 1996 Mar; 179(1):75-86. PubMed ID: 8733433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems.
    Stephani A; Heinrich R
    Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Albumin can reverse the release of potassium from human erythrocytes treated with the non-ionic detergent, Brij 58.
    Bogner P; Wheatley DN; Borbély C; Miseta A
    Cell Biol Int; 1996 Nov; 20(11):741-9. PubMed ID: 8979367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The role of cAMP in the energy metabolism of human erythrocytes].
    Mojsilović L; Zivković R; Kostić M
    Bilt Hematol Transfuz; 1981; 9(1-3):53-9. PubMed ID: 6299268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The sodium-potassium-chloride cotransport of the cell membrane].
    Urazaev AKh
    Usp Fiziol Nauk; 1998; 29(2):12-38. PubMed ID: 9659682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of pyruvate on glycolysis and the maintenance of adenine nucleotides in red cells.
    Rapoport SM; Rapoport I; Schauer M; Heinrich R
    Acta Biol Med Ger; 1981; 40(4-5):669-76. PubMed ID: 6458987
    [No Abstract]   [Full Text] [Related]  

  • 30. The relationship between glucose concentration and rate of lactate production by human erythrocytes in an open perfusion system.
    Kuchel PW; Chapman BE; Lovric VA; Raftos JE; Stewart IM; Thorburn DR
    Biochim Biophys Acta; 1984 Oct; 805(2):191-203. PubMed ID: 6487659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Some aspects of energy metabolism in human blood erythrocytes under hypokinesia and during space flights.
    Ushakov AS; Ivanova SM; Brantova SS
    Aviat Space Environ Med; 1977 Sep; 48(9):824-7. PubMed ID: 907593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy and heat production of human erythrocytes in different media.
    de Verdier CH
    Acta Biol Med Ger; 1981; 40(4-5):699-702. PubMed ID: 7315117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Level of the oxygen transport in erythrocytes preserved under different conditions].
    Petrov MM
    Probl Gematol Pereliv Krovi; 1981 Mar; 26(3):33-40. PubMed ID: 7015314
    [No Abstract]   [Full Text] [Related]  

  • 34. Cell shape and total adenylate concentration as important factors for posttransfusion survival of erythrocytes.
    Högman CF; De Verdier CH; Ericson A; Hedlund K; Sandhagen B
    Biomed Biochim Acta; 1983; 42(11-12):S327-31. PubMed ID: 6675713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico modeling and metabolome analysis of long-stored erythrocytes to improve blood storage methods.
    Nishino T; Yachie-Kinoshita A; Hirayama A; Soga T; Suematsu M; Tomita M
    J Biotechnol; 2009 Nov; 144(3):212-23. PubMed ID: 19695295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The role of oxidative metabolism in energy supply for active potassium transport in erythrocytes of Lampetra fluviatilis].
    Gusev GP; Sherstobitov AO; Ivanova TI; Bogdanova AIu
    Zh Evol Biokhim Fiziol; 2001; 37(3):170-4. PubMed ID: 11605435
    [No Abstract]   [Full Text] [Related]  

  • 37. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
    Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI
    Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Hexokinase and lactate dehydrogenase activity, lactic and pyruvic acid content of erythrocytes and acid-base equilibrium in stomach cancer patients after radical operations].
    Golub IKh; Kazantsev FN
    Vopr Onkol; 1981; 27(9):24-7. PubMed ID: 7293089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Adenine nucleotides and adenylate anergy charge in erythrocytes in psoriasis].
    Kosenko EA; Kaminskiĭ IuG; Goncharenko MS
    Vopr Med Khim; 1987; 33(6):37-41. PubMed ID: 2833030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Mathematical model of adaptation of the energy metabolism of a cell. Calculation of the influence of ATP on the activity and concentration of the initiator stage enzyme].
    Kaĭmachnikov NP; Sel'kov EE
    Biofizika; 1977; 22(2):241-6. PubMed ID: 861261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.