BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 4004843)

  • 1. The dependence of trout's electroretinographic response on temporal gradient of luminance. II. The off-response.
    Penzlin H; Hopp HH
    Biomed Biochim Acta; 1985; 44(3):449-54. PubMed ID: 4004843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of organophosphates on the electroretinogram of rainbow trout.
    Kreft WD; Hoffert JR; Fromm PO
    Exp Biol; 1985; 44(1):19-27. PubMed ID: 3849430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERG findings in three hypothyroid adult dogs with and without levothyroxine treatment.
    Durieux P; Rigaudière F; LeGargasson JF; Rosolen SG
    Vet Ophthalmol; 2008; 11(6):406-11. PubMed ID: 19046283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of background spatial contrast on electroretinographic responses in the human retina.
    Bodis-Wollner I; Brannan JR; Storch RL; Hajee ME; Minko M
    Vision Res; 2009 May; 49(9):922-30. PubMed ID: 18723047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina.
    Rangaswamy NV; Frishman LJ; Dorotheo EU; Schiffman JS; Bahrani HM; Tang RA
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3827-37. PubMed ID: 15452095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recording multifocal electroretinogram on and off responses in humans.
    Kondo M; Miyake Y; Horiguchi M; Suzuki S; Tanikawa A
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):574-80. PubMed ID: 9501869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gradient of retinal functional changes during acute intraocular pressure elevation.
    Bui BV; Edmunds B; Cioffi GA; Fortune B
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):202-13. PubMed ID: 15623775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the human a-wave ERG component.
    Barraco R; Bellomonte L; Brai M; Anastasi M
    Physiol Meas; 2006 Sep; 27(9):881-99. PubMed ID: 16868353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of photic environment on the form of the fish electroretinographic off-response.
    Gacić Z; Damjanović I; Konjević D; Bajić A; Milosević M; Andjus PR; Micković B; Andjus RK
    Ann N Y Acad Sci; 2005 Jun; 1048():437-40. PubMed ID: 16154971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Differentiation of the bimodal stimuli in a frog's retina].
    Izmaĭlov ChA; Zimachev MM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(1):65-79. PubMed ID: 17432319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution from proximal retina to intraretinal pattern ERG: the M-wave.
    Sieving PA; Steinberg RH
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1642-7. PubMed ID: 4055298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins.
    Hanazono G; Tsunoda K; Shinoda K; Tsubota K; Miyake Y; Tanifuji M
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2903-12. PubMed ID: 17525227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The d-wave in fish and the state of light adaptation.
    Gacić Z; Damjanović I; Bajić A; Milosević M; Mićković B; Nikcević M; Andjus PR
    Gen Physiol Biophys; 2007 Dec; 26(4):260-7. PubMed ID: 18281743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminosity functions of human electroretinogram wavelets evoked with pattern-reversal stimuli.
    Korth M
    Invest Ophthalmol Vis Sci; 1980 Jul; 19(7):810-6. PubMed ID: 7390728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ON- and OFF-response of the photopic electroretinogram in relation to stimulus characteristics.
    Sustar M; Hawlina M; Brecelj J
    Doc Ophthalmol; 2006 Jul; 113(1):43-52. PubMed ID: 16906409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The luminance-response function of the human photopic electroretinogram: a mathematical model.
    Hamilton R; Bees MA; Chaplin CA; McCulloch DL
    Vision Res; 2007 Oct; 47(23):2968-72. PubMed ID: 17889925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.