These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 4004905)

  • 41. Aging and reactivatability of plaice cholinesterase inhibited by soman and its stereoisomers.
    Bucht G; Puu G
    Biochem Pharmacol; 1984 Nov; 33(22):3573-7. PubMed ID: 6508819
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhalation toxicokinetics of soman stereoisomers in the atropinized guinea pig with nose-only exposure to soman vapor.
    Langenberg JP; Spruit HE; van der Wiel HJ; Trap HC; Helmich RB; Bergers WW; van Helden HP; Benschop HP
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):79-87. PubMed ID: 9705889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous quantification of soman and VX adducts to butyrylcholinesterase, their aged methylphosphonic acid adduct and butyrylcholinesterase in plasma using an off-column procainamide-gel separation method combined with UHPLC-MS/MS.
    Liu CC; Huang GL; Xi HL; Liu SL; Liu JQ; Yu HL; Zhou SK; Liang LH; Yuan L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Nov; 1036-1037():57-65. PubMed ID: 27718463
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: synergy results in a somanase.
    Millard CB; Lockridge O; Broomfield CA
    Biochemistry; 1998 Jan; 37(1):237-47. PubMed ID: 9425044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stereochemical specificity of organophosphorus acid anhydrolase toward p-nitrophenyl analogs of soman and sarin.
    Hill CM; Li WS; Cheng TC; DeFrank JJ; Raushel FM
    Bioorg Chem; 2001 Feb; 29(1):27-35. PubMed ID: 11300693
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The stability of sarin and soman in dilute aqueous solutions and the catalytic effect of acetate ion.
    Ellin RI; Groff WA; Kaminskis A
    J Environ Sci Health B; 1981; 16(6):713-7. PubMed ID: 7338595
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low level nose-only exposure to the nerve agent soman: toxicokinetics of soman stereoisomers and cholinesterase inhibition in atropinized guinea pigs.
    Benschop HP; Trap HC; Spruit HE; Van Der Wiel HJ; Langenberg JP; De Jong LP
    Toxicol Appl Pharmacol; 1998 Dec; 153(2):179-85. PubMed ID: 9878589
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soman-hydrolyzing and -detoxifying properties of an enzyme from a thermophilic bacterium.
    Chettur G; DeFrank JJ; Gallo BJ; Hoskin FC; Mainer S; Robbins FM; Steinmann KE; Walker JE
    Fundam Appl Toxicol; 1988 Oct; 11(3):373-80. PubMed ID: 2851472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Specific soman-hydrolyzing enzyme activity in a clonal neuronal cell culture.
    Ray R; Boucher LJ; Broomfield CA; Lenz DE
    Biochim Biophys Acta; 1988 Dec; 967(3):373-81. PubMed ID: 2848588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Paraoxonase activity against nerve gases measured by capillary electrophoresis and characterization of human serum paraoxonase (PON1) polymorphism in the coding region (Q192R).
    Kanamori-Kataoka M; Seto Y
    Anal Biochem; 2009 Feb; 385(1):94-100. PubMed ID: 18952040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The bispyridinium-dioxime HLö-7. A potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman.
    de Jong LP; Verhagen MA; Langenberg JP; Hagedorn I; Löffler M
    Biochem Pharmacol; 1989 Feb; 38(4):633-40. PubMed ID: 2917018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aging of soman-inhibited acetylcholinesterase: PH-rate profiles and temperature dependence in absence and in presence of effectors.
    Schoene K; Steinhanses J; Wertmann A
    Biochim Biophys Acta; 1980 Dec; 616(2):384-8. PubMed ID: 7213645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation and application of a GC-MS method for determining soman concentration in rat plasma following low-level vapor exposure.
    Renner JA; Dabisch PA; Evans RA; McGuire JM; Totura AL; Jakubowski EM; Thomson SA
    J Anal Toxicol; 2008; 32(1):92-8. PubMed ID: 18269800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactivation of acetylcholinesterase inhibited by 1,2,2'-trimethylpropyl methylphosphonofluoridate (soman) with HI-6 and related oximes.
    de Jong LP; Wolring GZ
    Biochem Pharmacol; 1980 Sep; 29(17):2379-87. PubMed ID: 7426043
    [No Abstract]   [Full Text] [Related]  

  • 55. GLC-analysis and pharmacokinetics of the four stereoisomers of Soman.
    Benschop HP; Berends F; de Jong LP
    Fundam Appl Toxicol; 1981; 1(2):177-82. PubMed ID: 7184783
    [No Abstract]   [Full Text] [Related]  

  • 56. Pharmacokinetics of the soman simulant 1,2,2-trimethylpropyl dimethylphosphinate (PDP) in rats.
    Benschop HP; Wesselman HC
    Arch Toxicol; 1989; 63(3):238-43. PubMed ID: 2764712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphylation kinetic constants and oxime-induced reactivation in acetylcholinesterase from fetal bovine serum, bovine caudate nucleus, and electric eel.
    Hanke DW; Overton MA
    J Toxicol Environ Health; 1991 Sep; 34(1):141-56. PubMed ID: 1890690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase.
    Mazor O; Cohen O; Kronman C; Raveh L; Stein D; Ordentlich A; Shafferman A
    Mol Pharmacol; 2008 Sep; 74(3):755-63. PubMed ID: 18523134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with (1)H- (31)P HSQC NMR spectroscopy.
    Gäb J; Melzer M; Kehe K; Wellert S; Hellweg T; Blum MM
    Anal Bioanal Chem; 2010 Feb; 396(3):1213-21. PubMed ID: 19943158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents.
    John H; Breyer F; Thumfart JO; Höchstetter H; Thiermann H
    Anal Bioanal Chem; 2010 Nov; 398(6):2677-91. PubMed ID: 20730528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.