These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4004940)

  • 1. Metabolism of mandelonitrile in the rat.
    Singh PD; Jackson JR; James SP
    Biochem Pharmacol; 1985 Jun; 34(12):2207-9. PubMed ID: 4004940
    [No Abstract]   [Full Text] [Related]  

  • 2. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750.
    Yamamoto K; Oishi K; Fujimatsu I; Komatsu K
    Appl Environ Microbiol; 1991 Oct; 57(10):3028-32. PubMed ID: 1660699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of benzyl cyanide in the rat.
    Guest A; Jackson JR; James SP
    Toxicol Lett; 1982 Feb; 10(2-3):265-72. PubMed ID: 7080096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic synthesis of (R)-(-)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401.
    He YC; Zhang ZJ; Xu JH; Liu YY
    J Ind Microbiol Biotechnol; 2010 Jul; 37(7):741-50. PubMed ID: 20411403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of thyroxine administration on the formation of thiocyanate from acetonitrile in mice.
    STOA KF
    Acta Pharmacol Toxicol (Copenh); 1952; 8(3):263-70. PubMed ID: 12985390
    [No Abstract]   [Full Text] [Related]  

  • 6. Efficient production of (R)-(-)-mandelic acid in biphasic system by immobilized recombinant E. coli.
    Ni K; Wang H; Zhao L; Zhang M; Zhang S; Ren Y; Wei D
    J Biotechnol; 2013 Sep; 167(4):433-40. PubMed ID: 23906842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression, characterization of a novel nitrilase PpL19 from Pseudomonas psychrotolerans with S-selectivity toward mandelonitrile present in active inclusion bodies.
    Sun H; Gao W; Wang H; Wei D
    Biotechnol Lett; 2016 Mar; 38(3):455-61. PubMed ID: 26564406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis.
    Sosedov O; Stolz A
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2623-35. PubMed ID: 25248440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis.
    Banerjee A; Kaul P; Banerjee UC
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):77. PubMed ID: 16391925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis.
    Bhatia SK; Mehta PK; Bhatia RK; Bhalla TC
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):83-94. PubMed ID: 24104468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haloacetonitrile excretion as thiocyanate and inhibition of dimethylnitrosamine demethylase: a proposed metabolic scheme.
    Pereira MA; Lin LH; Mattox JK
    J Toxicol Environ Health; 1984; 13(4-6):633-41. PubMed ID: 6492192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arene oxides in styrene metabolism, a new perspective in styrene toxicity?
    Pantarotto C; Fanelli R; Bidoli F; Morazzoni P; Salmona M; Szczawinska K
    Scand J Work Environ Health; 1978; 4 Suppl 2():67-77. PubMed ID: 734419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of a cyanogenic secretion by a thyridid caterpillar (Calindoea trifascialis, Thyrididae, Lepidoptera).
    Darling DC; Schroeder FC; Meinwald J; Eisner M; Eisner T
    Naturwissenschaften; 2001 Jul; 88(7):306-9. PubMed ID: 11544899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsomal metabolism of acetonitrile to cyanide. Effects of acetone and other compounds.
    Freeman JJ; Hayes EP
    Biochem Pharmacol; 1988 Mar; 37(6):1153-9. PubMed ID: 3355589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase.
    Ishida Y; Kuwahara Y; Dadashipour M; Ina A; Yamaguchi T; Morita M; Ichiki Y; Asano Y
    Sci Rep; 2016 Jun; 6():26998. PubMed ID: 27265180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoradiographic observations on injected S35-thiocyanate and C14-cyanide in mice.
    CLEMEDSON CJ; SORBO B; ULLBERG S
    Acta Physiol Scand; 1960 Apr; 48():382-9. PubMed ID: 13810625
    [No Abstract]   [Full Text] [Related]  

  • 17. Conversion of thiocyanate to cyanide by an erythrocytic enzyme.
    GOLDSTEIN F; RIEDERS F
    Am J Physiol; 1953 May; 173(2):287-90. PubMed ID: 13065442
    [No Abstract]   [Full Text] [Related]  

  • 18. The anaerobic metabolism of verapamil in rat cecal contents forms nor-verapamil and thiocyanate.
    Koch RL; Palicharla P
    J Pharmacol Exp Ther; 1990 Aug; 254(2):612-5. PubMed ID: 2384888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the microsomal metabolism of glycolonitrile.
    Freeman JJ; Hayes EP
    Biochem Pharmacol; 1987 Jan; 36(1):184-7. PubMed ID: 3801055
    [No Abstract]   [Full Text] [Related]  

  • 20. Leber's hereditary optic atrophy: a possible defect of cyanide metabolism.
    Wilson J
    Clin Sci; 1965 Dec; 29(3):505-15. PubMed ID: 5848703
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.