These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 4005257)

  • 1. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles.
    Mayer LD; Hope MJ; Cullis PR; Janoff AS
    Biochim Biophys Acta; 1985 Jul; 817(1):193-6. PubMed ID: 4005257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vesicles of variable sizes produced by a rapid extrusion procedure.
    Mayer LD; Hope MJ; Cullis PR
    Biochim Biophys Acta; 1986 Jun; 858(1):161-8. PubMed ID: 3707960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preservation of multilamellar lipid vesicles (liposomes) for ultrastructural studies.
    Bucana C; Hoyer LC; Plentovich D
    Scan Electron Microsc; 1983; (Pt 3):1329-37. PubMed ID: 6648342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance.
    Traïkia M; Warschawski DE; Recouvreur M; Cartaud J; Devaux PF
    Eur Biophys J; 2000; 29(3):184-95. PubMed ID: 10968210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyzine- and cetirizine-loaded liposomes: effect of duration of thin film hydration, freeze-thawing, and changing buffer pH on encapsulation and stability.
    Elzainy AA; Gu X; Simons FE; Simons KJ
    Drug Dev Ind Pharm; 2005 Mar; 31(3):281-91. PubMed ID: 15830724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the size distribution of liposomes produced by freeze-thaw extrusion.
    Castile JD; Taylor KM
    Int J Pharm; 1999 Oct; 188(1):87-95. PubMed ID: 10528086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase behavior of large unilamellar vesicles composed of synthetic phospholipids.
    Parente RA; Lentz BR
    Biochemistry; 1984 May; 23(11):2353-62. PubMed ID: 6477871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer.
    MacDonald RI; MacDonald RC
    Biochim Biophys Acta; 1983 Nov; 735(2):243-51. PubMed ID: 6688739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying.
    Strauss G; Schurtenberger P; Hauser H
    Biochim Biophys Acta; 1986 Jun; 858(1):169-80. PubMed ID: 3011090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of freeze-thawing on phospholipid/surfactant mixed bilayers.
    Oku N; Tsudera J; Kurohane K; Okada S
    Chem Pharm Bull (Tokyo); 1996 Oct; 44(10):1928-30. PubMed ID: 8904821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of electrolyte on the encapsulation efficiency of vesicles formed by the nonionic surfactant, 2C18E12.
    Harvey RD; Barlow DJ; Drake AF; Kudsiova L; Lawrence MJ; Brain AP; Heenan RK
    J Colloid Interface Sci; 2007 Nov; 315(2):648-61. PubMed ID: 17692324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation.
    Düzgüneş N; Wilschut J; Hong K; Fraley R; Perry C; Friend DS; James TL; Papahadjopoulos D
    Biochim Biophys Acta; 1983 Jul; 732(1):289-99. PubMed ID: 6688185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide.
    Yokoyama S; Inagaki A; Imura T; Ohkubo T; Tsubaki N; Sakai H; Abe M
    Colloids Surf B Biointerfaces; 2005 Sep; 44(4):204-10. PubMed ID: 16087320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-fracture of lipids and model membrane systems.
    Hope MJ; Wong KF; Cullis PR
    J Electron Microsc Tech; 1989 Dec; 13(4):277-87. PubMed ID: 2681573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers.
    Gerritsen WJ; de Kruijff B; Verkleij AJ; de Gier J; van Deenen LL
    Biochim Biophys Acta; 1980 Jun; 598(3):554-60. PubMed ID: 7388023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The captured volume of multilamellar vesicles.
    Perkins WR; Minchey SR; Ostro MJ; Taraschi TF; Janoff AS
    Biochim Biophys Acta; 1988 Aug; 943(1):103-7. PubMed ID: 2840957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-polyethylene glycol interactions: I. Induction of fusion between liposomes.
    Boni LT; Stewart TP; Alderfer JL; Hui SW
    J Membr Biol; 1981; 62(1-2):65-70. PubMed ID: 7196956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological responses to calcium-induced interaction of phosphatidylserine-containing vesicles.
    Kachar B; Fuller N; Rand RP
    Biophys J; 1986 Nov; 50(5):779-88. PubMed ID: 3790685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.