BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4005268)

  • 1. Circular dichroism studies of acetylcholinesterase conformation. Comparison of the 11 S and 5.6 S species and the differences induced by inhibitory ligands.
    Manavalan P; Taylor P; Johnson WC
    Biochim Biophys Acta; 1985 Jul; 829(3):365-70. PubMed ID: 4005268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation similarities of the globular and tailed forms of acetylcholinesterase from Torpedo californica.
    Wu CS; Gan L; Yang JT
    Biochim Biophys Acta; 1987 Jan; 911(1):25-36. PubMed ID: 3790597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of "peripheral" site ligands on Torpedo and chicken acetylcholinesterase.
    Eichler J; Anselment A; Sussman JL; Massoulié J; Silman I
    Mol Pharmacol; 1994 Feb; 45(2):335-40. PubMed ID: 8114681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies on acetylcholinesterase: influence of peripheral-site occupation on active-center conformation.
    Berman HA; Becktel W; Taylor P
    Biochemistry; 1981 Aug; 20(16):4803-10. PubMed ID: 7295650
    [No Abstract]   [Full Text] [Related]  

  • 5. Raman spectroscopic study on the conformation of 11 S form acetylcholinesterase from Torpedo californica.
    Aslanian D; Gróf P; Négrerie M; Balkanski M; Taylor P
    FEBS Lett; 1987 Jul; 219(1):202-6. PubMed ID: 3595873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica.
    Koellner G; Kryger G; Millard CB; Silman I; Sussman JL; Steiner T
    J Mol Biol; 2000 Feb; 296(2):713-35. PubMed ID: 10669619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conformation of T4 bacteriophage dihydrofolate reductase from circular dichroism.
    Compton LA; Mathews CK; Johnson WC
    J Biol Chem; 1987 Sep; 262(27):13039-43. PubMed ID: 3308867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction structure type for human leukocyte interferon subtype A from circular dichroism.
    Manavalan P; Johnson WC; Johnston PD
    FEBS Lett; 1984 Oct; 175(2):227-30. PubMed ID: 6383866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of ligand and inhibitor interactions with acetylcholinesterase.
    Das YT; Brown HD; Chattopadhyay SK
    Biochem Cell Biol; 1987 Sep; 65(9):798-802. PubMed ID: 3440086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational analysis of thymidylate synthase from amino acid sequence and circular dichroism.
    Manavalan P; Mittelstaedt DM; Schimerlik MI; Johnson WC
    Biochemistry; 1986 Oct; 25(21):6650-5. PubMed ID: 3098289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase.
    Harel M; Schalk I; Ehret-Sabatier L; Bouet F; Goeldner M; Hirth C; Axelsen PH; Silman I; Sussman JL
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9031-5. PubMed ID: 8415649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation of acetylcholine receptor in the presence of agonists and antagonists.
    Wu CS; Sun XH; Yang JT
    J Protein Chem; 1990 Feb; 9(1):119-26. PubMed ID: 2340071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconvolution of the circular dichroism spectra of proteins: the circular dichroism spectra of the antiparallel beta-sheet in proteins.
    Perczel A; Park K; Fasman GD
    Proteins; 1992 May; 13(1):57-69. PubMed ID: 1594578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of secondary structure of globular proteins using circular dichroism spectra].
    Shubin VV; Khazin ML; Efimovskaia TV
    Mol Biol (Mosk); 1990; 24(1):189-201. PubMed ID: 2348821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tacrine protection of acetylcholinesterase from inactivation by diisopropylfluorophosphate: a circular dichroism study.
    Wu CS; Yang JT
    Mol Pharmacol; 1989 Jan; 35(1):85-92. PubMed ID: 2913485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent phosphonate labels for serine hydrolases. Kinetic and spectroscopic properties of (7-nitrobenz-2-oxa-1,3-diazole)aminoalkyl methylphosphonofluoridates and their conjugates with acetylcholinesterase molecular forms.
    Berman HA; Olshefski DF; Gilbert M; Decker MM
    J Biol Chem; 1985 Mar; 260(6):3462-8. PubMed ID: 3972833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis.
    Harel M; Sussman JL; Krejci E; Bon S; Chanal P; Massoulié J; Silman I
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10827-31. PubMed ID: 1438284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of beta,beta-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism.
    Brahms S; Brahms J; Spach G; Brack A
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3208-12. PubMed ID: 269385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding.
    Taylor P; Lappi S
    Biochemistry; 1975 May; 14(9):1989-97. PubMed ID: 1125207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p-Butyroxybenzenediazonium fluoroborate, substrate of acetylcholinesterase and butyrylcholinesterase, discriminates between the two enzymes by a specific affinity labelling.
    Ehret-Sabatier L; Goeldner MP; Hirth CG
    Biochim Biophys Acta; 1991 Jan; 1076(1):137-42. PubMed ID: 1986786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.