These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 400531)
1. Control of red cell deformability and shape. Mohandas N; Shohet SB Curr Top Hematol; 1978; 1():71-125. PubMed ID: 400531 [No Abstract] [Full Text] [Related]
2. [Hereditary diseases of the human erythrocyte membrane skeleton (author's transl)]. Boivin P Nouv Presse Med; 1982 Jul; 11(31):2347-51. PubMed ID: 7111000 [TBL] [Abstract][Full Text] [Related]
3. Hereditary spherocytosis: ionophore treatment of erythrocytes in vitro. Szibor R; Petermann H; Wenz I; Steinbicker V; Till U; Nahrendorf C; Mittler U; Hermann J Acta Biol Med Ger; 1982; 41(9):781-6. PubMed ID: 6299036 [No Abstract] [Full Text] [Related]
4. [Erythrocyte form and deformability for normal blood and some hereditary hemolytic anemias (author's transl)]. Bessis M Nouv Rev Fr Hematol Blood Cells; 1977; 18(1):75-94. PubMed ID: 896459 [TBL] [Abstract][Full Text] [Related]
5. Evidence that spectrin is a determinant of shape and deformability in the human erythrocyte. Lux SE; John KM Prog Clin Biol Res; 1977; 17():481-91. PubMed ID: 928462 [No Abstract] [Full Text] [Related]
7. The erythrocyte membrane abnormality of hereditary spherocytosis. Zail SS Br J Haematol; 1977 Nov; 37(3):305-10. PubMed ID: 146514 [No Abstract] [Full Text] [Related]
8. Disorders of red cell membrane: history and perspectives. Weed RI Semin Hematol; 1970 Jul; 7(3):249-58. PubMed ID: 4913044 [No Abstract] [Full Text] [Related]
9. Membrane fragmentation and Ca ++ -membrane interaction: potential mechanisms of shape change in the senescent red cell. La Celle PL; Kirkpatrick FH; Udkow MP; Arkin B Nouv Rev Fr Hematol; 1972; 12(6):789-98. PubMed ID: 4268788 [No Abstract] [Full Text] [Related]
11. Disorders of erythrocyte cation permeability and water content associated with hemolytic anemia. Mentzer WC; Clark MR Biomembranes; 1983; 11():79-118. PubMed ID: 6338953 [No Abstract] [Full Text] [Related]
12. Abnormal membrane protein of red blood cells in hereditary spherocytosis. Jacob HS; Ruby A; Overland ES; Mazia D J Clin Invest; 1971 Sep; 50(9):1800-5. PubMed ID: 5564386 [TBL] [Abstract][Full Text] [Related]
13. The red cell membrane in hemolytic anemia. Cooper RA; Shattil SJ Mod Treat; 1971 May; 8(2):329-51. PubMed ID: 4940517 [No Abstract] [Full Text] [Related]
14. Pathological alterations of cation movements in red blood cells. Parker JC; Welt LG Arch Intern Med; 1972 Feb; 129(2):320-32. PubMed ID: 4258090 [No Abstract] [Full Text] [Related]
15. Erythrocyte shape transformation associated with calcium accumulation. Kretchman JM; Rogers BS Am J Med Technol; 1981 Jul; 47(7):561-6. PubMed ID: 7025629 [TBL] [Abstract][Full Text] [Related]
18. Studies on calcium transport and calcium-dependent adenosine triphosphatase activity of erythrocyte membranes in hereditary spherocytosis. Zail SS; van den Hoek AK Br J Haematol; 1976 Dec; 34(4):605-11. PubMed ID: 136267 [TBL] [Abstract][Full Text] [Related]
19. Theoretical models of capillary flow. Skalak R Blood Cells; 1982; 8(1):147-52. PubMed ID: 7115972 [TBL] [Abstract][Full Text] [Related]
20. Physiologically important secondary modifications of red cell membrane in hereditary spherocytosis-evidence for in vivo oxidation and lipid rafts protein variations. Margetis P; Antonelou M; Karababa F; Loutradi A; Margaritis L; Papassideri I Blood Cells Mol Dis; 2007; 38(3):210-20. PubMed ID: 17208471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]