These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4005589)

  • 1. Regional tritium quenching in quantitative autoradiography of the central nervous system.
    Geary WA; Wooten GF
    Brain Res; 1985 Jun; 336(2):334-6. PubMed ID: 4005589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tritium quench in autoradiography during postnatal development of rat forebrain.
    Happe HK; Murrin LC
    Brain Res; 1990 Aug; 525(1):28-35. PubMed ID: 2245324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative film autoradiography for tritium: methodological considerations.
    Geary WA; Toga AW; Wooten GF
    Brain Res; 1985 Jun; 337(1):99-108. PubMed ID: 4005611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in tritium autoabsorption.
    Harrison MB; Hogan CJ; Lothman EW
    Neuroimage; 1992 Aug; 1(1):3-9. PubMed ID: 9343553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoradiographic determination of regional brain glucose content.
    Gjedde A; Diemer NH
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):303-10. PubMed ID: 6874739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative receptor autoradiography: tissue defatting eliminates differential self-absorption of tritium radiation in gray and white matter of brain.
    Herkenham M; Sokoloff L
    Brain Res; 1984 Nov; 321(2):363-8. PubMed ID: 6093939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for quenching correction leads to revisions of data in receptor autoradiography.
    Zilles K; zur Nieden K; Schleicher A; Traber J
    Histochemistry; 1990; 94(6):569-78. PubMed ID: 2177745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of brain deoxyglucose metabolism by NMR.
    Nelson T; Lucignani G; Sokoloff L
    Science; 1986 May; 232(4751):776-7. PubMed ID: 3008340
    [No Abstract]   [Full Text] [Related]  

  • 9. Standardization of tritium-sensitive film for quantitative autoradiography.
    Baskin DG; Filuk PE; Stahl WL
    J Histochem Cytochem; 1989 Sep; 37(9):1337-44. PubMed ID: 2768806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic assays for 2-deoxyglucose and 2-deoxyglucose 6-phosphate.
    Chi MM; Pusateri ME; Carter JG; Norris BJ; McDougal DB; Lowry OH
    Anal Biochem; 1987 Mar; 161(2):508-13. PubMed ID: 3555157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of 2-deoxyglucose and 2-deoxyglucose 6-phosphate in tissues.
    Manchester JK; Chi MM; Carter JG; Pusateri ME; McDougal DB; Lowry OH
    Anal Biochem; 1990 Feb; 185(1):118-24. PubMed ID: 2188524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose.
    Alexander GM; Schwartzman RJ; Bell RD; Yu J; Renthal A
    Brain Res; 1981 Oct; 223(1):59-67. PubMed ID: 7284810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tritiated 2-deoxy-D-glucose: a high-resolution marker for autoradiographic localization of brain metabolism.
    Hammer RP; Herkenham M
    J Comp Neurol; 1984 Jan; 222(1):128-39. PubMed ID: 6699200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Region-specific tritium enrichment, and not differential beta-absorption, is the major cause of 'quenching' in film autoradiography.
    McEachron DL; Nissanov J; Tretiak OJ
    Phys Med Biol; 1997 Jun; 42(6):1121-32. PubMed ID: 9194132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain.
    Mies G; Bodsch W; Paschen W; Hossmann KA
    J Cereb Blood Flow Metab; 1986 Feb; 6(1):59-70. PubMed ID: 3944217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMDA Receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat.
    Gilland E; Hagberg H
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1005-13. PubMed ID: 8784246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolytic concomitant of brain inflammation produced by goldthioglucose.
    Dirocco RJ; Coons EE
    Brain Res; 1985 Jun; 336(2):313-7. PubMed ID: 3924344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quantitative determination of the in vivo dephosphorylation of glucose 6-phosphate in rat brain.
    Huang M; Veech RL
    J Biol Chem; 1982 Oct; 257(19):11358-63. PubMed ID: 6749838
    [No Abstract]   [Full Text] [Related]  

  • 19. On the measurement of glucose in brain: a comment to Sacks et al. (1983).
    Gjedde A
    Neurochem Res; 1984 Nov; 9(11):1667-71. PubMed ID: 6521823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of pancreatic endocrine B cells of neonatal rat. Part XI. Effect of 2-deoxyglucose-6-phosphate.
    Kagawa S; Nakao K; Wakabayashi S; Matsuoka A
    Indian J Biochem Biophys; 1987 Feb; 24(1):39-42. PubMed ID: 3305316
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.