BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 4005590)

  • 1. Single unit sensory activity in free walking crabs: force sensitive mechanoreceptors of the dactyl.
    Zill SN; Libersat F; Clarac F
    Brain Res; 1985 Jun; 336(2):337-41. PubMed ID: 4005590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function.
    Libersat F; Clarac F; Zill S
    J Neurophysiol; 1987 May; 57(5):1618-37. PubMed ID: 3585482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-unit responses and reflex effects of force-sensitive mechanoreceptors of the dactyl of the crab.
    Libersat F; Zill S; Clarac F
    J Neurophysiol; 1987 May; 57(5):1601-17. PubMed ID: 3585481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual locomotor activity selectively controlled by force- and contact-sensitive mechanoreceptors.
    Bévengut M; Libersat F; Clarac F
    Neurosci Lett; 1986 May; 66(3):323-7. PubMed ID: 3725195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of abrasion and Na+ on dactyl-mediated chemoreception in mature kelp crabs, Pugettia producta (Randall).
    Hamilton KA; Case JF
    J Exp Zool; 1983 Jun; 226(3):363-72. PubMed ID: 6886659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic responses of series force receptors innervating the opener muscle apodeme in the blue crab, Callinectes sapidus.
    Tryba AK; Hartman HB
    J Comp Physiol A; 1997; 180(3):215-21. PubMed ID: 10866551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects.
    Zill SN; Dallmann CJ; Zyhowski W; Chaudhry H; Gebehart C; Szczecinski NS
    J Neurophysiol; 2024 Feb; 131(2):198-215. PubMed ID: 38166479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active signaling of leg loading and unloading in the cockroach.
    Ridgel AL; Frazier SF; Dicaprio RA; Zill SN
    J Neurophysiol; 1999 Mar; 81(3):1432-7. PubMed ID: 10085370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion.
    Ridgel AL; Frazier SF; DiCaprio RA; Zill SN
    J Comp Physiol A; 2000 Apr; 186(4):359-74. PubMed ID: 10798724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A; 2001 Dec; 187(10):769-84. PubMed ID: 11800034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, including receptors with round cuticular caps.
    Zill SN; Chaudhry S; Büschges A; Schmitz J
    Arthropod Struct Dev; 2013 Nov; 42(6):455-467. PubMed ID: 24126203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
    Zill SN; Keller BR; Duke ER
    J Neurophysiol; 2009 May; 101(5):2297-304. PubMed ID: 19261716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are the funnel-canal organs the 'campaniform sensilla' of the shore crab, Carcinus maenas (Decapoda, Crustacea)? II. Ultrastructure.
    Schmidt M; Gnatzy W
    Cell Tissue Res; 1984; 237(1):81-93. PubMed ID: 6478486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal adaptations for forwards and sideways walking in three species of decapod crustaceans.
    Vidal-Gadea AG; Rinehart MD; Belanger JH
    Arthropod Struct Dev; 2008 Mar; 37(2):95-108. PubMed ID: 18089130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflex actions of one proprioceptor on the motoneurones of a muscle receptor and their central modulation in the shore crab.
    Head SI; Bush BM
    J Physiol; 1991 Jun; 437():49-62. PubMed ID: 1890645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics of walking in the hermit crab, Pagurus pollicarus.
    Chapple W
    Arthropod Struct Dev; 2012 Mar; 41(2):119-31. PubMed ID: 22321513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migration-related changes in gene expression in leg muscle of the Christmas Island red crab Gecarcoidea natalis: seasonal preparation for long-distance walking.
    Postel U; Thompson F; Barker G; Viney M; Morris S
    J Exp Biol; 2010 May; 213(Pt 10):1740-50. PubMed ID: 20435825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force feedback reinforces muscle synergies in insect legs.
    Zill SN; Chaudhry S; Büschges A; Schmitz J
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):541-53. PubMed ID: 26193626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary transition to sideways-walking gaits in brachyurans was accompanied by a reduction in the number of motor neurons innervating proximal leg musculature.
    Vidal-Gadea AG; Belanger JH
    Arthropod Struct Dev; 2013 Nov; 42(6):443-454. PubMed ID: 23916868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system.
    Layne JE; Barnes WJ; Duncan LM
    J Exp Biol; 2003 Dec; 206(Pt 24):4425-42. PubMed ID: 14610028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.