These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4005625)

  • 1. Electrophysiological characteristics of amygdaloid central nucleus neurons in the awake rabbit.
    Pascoe JP; Kapp BS
    Brain Res Bull; 1985 Apr; 14(4):331-8. PubMed ID: 4005625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of amygdaloid central nucleus neurons to stimulation of the insular cortex in awake rabbits.
    Pascoe JP; Kapp BS
    Neuroscience; 1987 May; 21(2):471-85. PubMed ID: 3614641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit.
    Pascoe JP; Kapp BS
    Behav Brain Res; 1985 Aug; 16(2-3):117-33. PubMed ID: 4041212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some electrophysiological characteristics of insular cortex efferents to the amygdaloid central nucleus in awake rabbits.
    Pascoe JP; Kapp BS
    Neurosci Lett; 1987 Aug; 78(3):288-94. PubMed ID: 3627565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of stimulation of substantia innominata and sensory receiving areas of the forebrain upon the activity of neurons within the amygdala of the anesthetized cat.
    Femano PA; Edinger HM; Siegel A
    Brain Res; 1983 Jun; 269(1):119-32. PubMed ID: 6307477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing.
    Turner BH; Herkenham M
    J Comp Neurol; 1991 Nov; 313(2):295-325. PubMed ID: 1765584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of the amygdaloid central nucleus to the modulation of the nictitating membrane reflex in the rabbit.
    Whalen PJ; Kapp BS
    Behav Neurosci; 1991 Feb; 105(1):141-53. PubMed ID: 2025386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed actions and dynamic associations in respiratory-related neuronal assemblies of the ventrolateral medulla and brain stem midline: evidence from spike train analysis.
    Lindsey BG; Segers LS; Morris KF; Hernandez YM; Saporta S; Shannon R
    J Neurophysiol; 1994 Oct; 72(4):1830-51. PubMed ID: 7823104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of impulses from the central amygdala and bed nucleus of the stria terminalis to the brain stem.
    Nagy FZ; Paré D
    J Neurophysiol; 2008 Dec; 100(6):3429-36. PubMed ID: 18971295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdaloid modulation of mesopontine peribrachial neuronal activity: implications for arousal.
    Silvestri AJ; Kapp BS
    Behav Neurosci; 1998 Jun; 112(3):571-88. PubMed ID: 9676974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiology of the dorsolateral mesopontine reticular formation during Pavlovian conditioning in the rabbit.
    Pascoe JP; Kapp BS
    Neuroscience; 1993 Jun; 54(3):753-72. PubMed ID: 8332260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport-immunohistochemical study.
    Veening JG; Swanson LW; Sawchenko PE
    Brain Res; 1984 Jun; 303(2):337-57. PubMed ID: 6204716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous activity and sensory responses of hippocampal neurons during persistent theta-rhythm evoked by median raphe nucleus blockade in rabbit.
    Vinogradova OS; Kitchigina VF; Kudina TA; Zenchenko KI
    Neuroscience; 1999; 94(3):745-53. PubMed ID: 10579565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses.
    Guitton D; Munoz DP
    J Neurophysiol; 1991 Nov; 66(5):1605-23. PubMed ID: 1765797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrophysiological study of amygdalohypothalamic projections to the ventromedial nucleus of the rat.
    Renaud LP
    Brain Res; 1976 Mar; 105(1):45-58. PubMed ID: 1252957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of responses of neurons of the limbic nuclei of the thalamus. Anteroventral and anteromedial nuclei].
    Pakhotin PI; Vinogradova OS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1981; 31(4):819-28. PubMed ID: 7303903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: an in vivo extra- and intracellular electrophysiological study.
    Mello LE; Tan AM; Finch DM
    Brain Res; 1992 Jul; 587(1):24-40. PubMed ID: 1525648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic and extrinsic connections of the rat central extended amygdala: an in vivo electrophysiological study of the central amygdaloid nucleus.
    Veinante P; Freund-Mercier MJ
    Brain Res; 1998 Jun; 794(2):188-98. PubMed ID: 9622626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microelectrode study of projections from the amygdaloid complex to the nucleus accumbens in the cat.
    Ito N; Ishida H; Miyakawa F; Naito H
    Brain Res; 1974 Feb; 67(2):338-41. PubMed ID: 4470427
    [No Abstract]   [Full Text] [Related]  

  • 20. Cardiovascular responses elicited by stimulation of neurons in the central amygdaloid nucleus in awake but not anesthetized rats resemble conditioned emotional responses.
    Iwata J; Chida K; LeDoux JE
    Brain Res; 1987 Aug; 418(1):183-8. PubMed ID: 2889508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.