These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 400617)

  • 1. Molecular interactions at the cholinergic receptor in neuromuscular blockade.
    Stenlake JB
    Prog Med Chem; 1979; 16():257-86. PubMed ID: 400617
    [No Abstract]   [Full Text] [Related]  

  • 2. The facilitatory actions of snake venom phospholipase A(2) neurotoxins at the neuromuscular junction are not mediated through voltage-gated K(+) channels.
    Fathi H B; Rowan EG; Harvey AL
    Toxicon; 2001 Dec; 39(12):1871-82. PubMed ID: 11600150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipase A inhibition of acetylcholine receptor function in Torpedo californica membrane vesicles.
    Andreasen TJ; McNamee MG
    Biochem Biophys Res Commun; 1977 Dec; 79(3):958-65. PubMed ID: 597318
    [No Abstract]   [Full Text] [Related]  

  • 4. Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps. A neurotoxin that enhances acetylcholine release at neuromuscular junction.
    Harvey AL; Karlsson E
    Naunyn Schmiedebergs Arch Pharmacol; 1980 May; 312(1):1-6. PubMed ID: 7393344
    [No Abstract]   [Full Text] [Related]  

  • 5. [Blockade of the ion channels of the skeletal muscle acetylcholine receptor].
    Danilov AF
    Eksp Klin Farmakol; 1998; 61(6):73-5. PubMed ID: 9929824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular blocking activity of two fractions isolated from the venom of the seasnake, Laticauda semifasciata.
    Harvey AL; Rodger IW; Tamiya N
    Toxicon; 1978; 16(1):45-50. PubMed ID: 622725
    [No Abstract]   [Full Text] [Related]  

  • 7. Coral snake venoms: mode of action and pathophysiology of experimental envenomation (1).
    Vital Brazil O
    Rev Inst Med Trop Sao Paulo; 1987; 29(3):119-26. PubMed ID: 3324278
    [No Abstract]   [Full Text] [Related]  

  • 8. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade.
    Hellsten Y; Krustrup P; Iaia FM; Secher NH; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1106-12. PubMed ID: 19193948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A revised model of the molecular structure of the acetylcholine receptor at the neuromuscular junction.
    Smythies JR
    Med Hypotheses; 1983 Apr; 10(4):465-8. PubMed ID: 6877123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On some principles of interaction of curare-like agents with acetylcholine receptors of skeletal muscles.
    Kharkevich DA; Skoldinov AP
    J Pharm Pharmacol; 1980 Nov; 32(11):733-9. PubMed ID: 6110719
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetics of Chemical Processes in the Human Brain. Proton Blockade of Acetylcholinesterase and pH-Impulse in the Mechanism of Functioning of the Cholinergic Synapse.
    Varfolomeev SD; Bykov VI; Tsybenova SB
    Dokl Biochem Biophys; 2020 Mar; 491(1):85-88. PubMed ID: 32483758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance and dissolution of acetylcholine receptor clusters in the embryonic muscle cell membrane.
    Orida N; Poo MM
    Brain Res; 1981 Apr; 227(2):293-8. PubMed ID: 7225895
    [No Abstract]   [Full Text] [Related]  

  • 13. Stereochemical relationships between two new curare-like toxins and a model of the acetylcholine receptor at the neuromuscular junction.
    Symthies JR
    Med Hypotheses; 1981 Dec; 7(12):1457-60. PubMed ID: 6460919
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization and distribution of acetylcholine receptors and acetylcholinesterase during electric organ development in Torpedo marmorata.
    Witzemann V; Richardson G; Boustead C
    Neuroscience; 1983; 8(2):333-49. PubMed ID: 6843826
    [No Abstract]   [Full Text] [Related]  

  • 15. [Acetylcholine receptor in skeletal muscle (author's transl)].
    Kosk-Kosicka D
    Postepy Biochem; 1980; 26(2):225-41. PubMed ID: 7001418
    [No Abstract]   [Full Text] [Related]  

  • 16. Coupling between the nicotinic acetylcholine receptor site and the ionic channel site.
    Eldefrawi ME; Eldefrawi AT
    Ann N Y Acad Sci; 1980; 358():239-52. PubMed ID: 6259991
    [No Abstract]   [Full Text] [Related]  

  • 17. Amantadine: neuromuscular blockade by suppression of ionic conductance of the acetylcholine receptor.
    Albuquerque EX; Eldefrawi AT; Eldefrawi ME; Mansour NA; Tsai MC
    Science; 1978 Feb; 199(4330):788-90. PubMed ID: 622570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular blocking actions of neurotoxins isolated from Laticauda semifasciata, Naja naja and Naja naja atra--a comparative assay--.
    Kuraishi Y; Misu Y; Takagi H; Hayashi K
    Jpn J Pharmacol; 1977 Jun; 27(3):464-7. PubMed ID: 916390
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of taipoxin on the ultrastructure of cholinergic axon terminals in the mouse adrenal medulla.
    Lüllmann-Rauch R; Thesleff S
    Neuroscience; 1979; 4(6):837-41. PubMed ID: 481754
    [No Abstract]   [Full Text] [Related]  

  • 20. Dissociation of the end-plate potential run-down and the tetanic fade from the postsynaptic inhibition of acetylcholine receptor by alpha-neurotoxins.
    Chang CC; Hong SJ
    Exp Neurol; 1987 Dec; 98(3):509-17. PubMed ID: 3678429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.